Oplossen voor a
\left\{\begin{matrix}a=-\left(-4\left(4-b\right)^{2}+b+c\right)\text{, }&-\left(8-2b\right)\geq 0\text{ and }b\leq 5\\a=-\left(-4\left(6-b\right)^{2}+b+c\right)\text{, }&12-2b\geq 0\text{ and }b\geq 5\end{matrix}\right,
Oplossen voor b
\left\{\begin{matrix}b=\frac{\sqrt{16a+16c+65}+33}{8}\text{, }&a\geq -c-\frac{65}{16}\text{ and }a\leq -c-1\\b=\frac{-\sqrt{16a+16c+65}+33}{8}\text{, }&a\geq -c-\frac{65}{16}\text{ and }a\leq -c-4\\b=\frac{-\sqrt{16a+16c+97}+49}{8}\text{, }&a\geq -c-6\text{ and }a\leq -c-1\end{matrix}\right,
Delen
Gekopieerd naar klembord
\sqrt{a+b+c}+\sqrt{\left(a^{2}+1\right)\times 0}+|10-2b|=2
Combineer b en -b om 0 te krijgen.
\sqrt{a+b+c}+\sqrt{0}+|10-2b|=2
Een waarde maal nul retourneert nul.
\sqrt{a+b+c}+0+|10-2b|=2
Bereken de vierkantswortel van 0 en krijg 0.
\sqrt{a+b+c}+|10-2b|=2
Een waarde plus nul retourneert zichzelf.
\sqrt{a+b+c}=2-|10-2b|
Trek aan beide kanten |10-2b| af.
a+b+c=\left(-|10-2b|+2\right)^{2}
Herleid de wortel aan beide kanten van de vergelijking.
a+b+c-\left(b+c\right)=\left(-|10-2b|+2\right)^{2}-\left(b+c\right)
Trek aan beide kanten van de vergelijking b+c af.
a=\left(-|10-2b|+2\right)^{2}-\left(b+c\right)
Als u b+c aftrekt van zichzelf, is de uitkomst 0.
a=\left(-|10-2b|+2\right)^{2}-b-c
Trek b+c af van \left(2-|10-2b|\right)^{2}.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}