Overslaan en naar de inhoud gaan
Evalueren
Tick mark Image

Vergelijkbare problemen van Web Search

Delen

\frac{\sqrt{9}}{\sqrt{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Herschrijf de vierkantswortel van de deling \sqrt{\frac{9}{2}} als de verdeling van vierkante hoofdmappen \frac{\sqrt{9}}{\sqrt{2}}.
\frac{3}{\sqrt{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Bereken de vierkantswortel van 9 en krijg 3.
\frac{3\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Rationaliseer de noemer van \frac{3}{\sqrt{2}} door teller en noemer te vermenigvuldigen met \sqrt{2}.
\frac{3\sqrt{2}}{2}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Het kwadraat van \sqrt{2} is 2.
\frac{3\sqrt{2}}{2}+\frac{\sqrt{25}}{\sqrt{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Herschrijf de vierkantswortel van de deling \sqrt{\frac{25}{8}} als de verdeling van vierkante hoofdmappen \frac{\sqrt{25}}{\sqrt{8}}.
\frac{3\sqrt{2}}{2}+\frac{5}{\sqrt{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Bereken de vierkantswortel van 25 en krijg 5.
\frac{3\sqrt{2}}{2}+\frac{5}{2\sqrt{2}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Factoriseer 8=2^{2}\times 2. Herschrijf de vierkantswortel van het product \sqrt{2^{2}\times 2} als het product van vierkante hoofdmappen \sqrt{2^{2}}\sqrt{2}. Bereken de vierkantswortel van 2^{2}.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Rationaliseer de noemer van \frac{5}{2\sqrt{2}} door teller en noemer te vermenigvuldigen met \sqrt{2}.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2\times 2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Het kwadraat van \sqrt{2} is 2.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{4}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Vermenigvuldig 2 en 2 om 4 te krijgen.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Combineer \frac{3\sqrt{2}}{2} en \frac{5\sqrt{2}}{4} om \frac{11}{4}\sqrt{2} te krijgen.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{1}}{\sqrt{8}}
Herschrijf de vierkantswortel van de deling \sqrt{\frac{1}{8}} als de verdeling van vierkante hoofdmappen \frac{\sqrt{1}}{\sqrt{8}}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{1}{\sqrt{8}}
Bereken de vierkantswortel van 1 en krijg 1.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{1}{2\sqrt{2}}
Factoriseer 8=2^{2}\times 2. Herschrijf de vierkantswortel van het product \sqrt{2^{2}\times 2} als het product van vierkante hoofdmappen \sqrt{2^{2}}\sqrt{2}. Bereken de vierkantswortel van 2^{2}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationaliseer de noemer van \frac{1}{2\sqrt{2}} door teller en noemer te vermenigvuldigen met \sqrt{2}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{2\times 2}
Het kwadraat van \sqrt{2} is 2.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{4}
Vermenigvuldig 2 en 2 om 4 te krijgen.
3\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}
Combineer \frac{11}{4}\sqrt{2} en \frac{\sqrt{2}}{4} om 3\sqrt{2} te krijgen.