Overslaan en naar de inhoud gaan
Oplossen voor k (complex solution)
Tick mark Image
Oplossen voor k
Tick mark Image
Oplossen voor x (complex solution)
Tick mark Image
Oplossen voor x
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

x^{2}-kx^{2}+x+1-k=0
Gebruik de distributieve eigenschap om 1-k te vermenigvuldigen met x^{2}.
-kx^{2}+x+1-k=-x^{2}
Trek aan beide kanten x^{2} af. Een waarde afgetrokken van nul retourneert de bijbehorende negatie.
-kx^{2}+1-k=-x^{2}-x
Trek aan beide kanten x af.
-kx^{2}-k=-x^{2}-x-1
Trek aan beide kanten 1 af.
\left(-x^{2}-1\right)k=-x^{2}-x-1
Combineer alle termen met k.
\frac{\left(-x^{2}-1\right)k}{-x^{2}-1}=\frac{-x^{2}-x-1}{-x^{2}-1}
Deel beide zijden van de vergelijking door -x^{2}-1.
k=\frac{-x^{2}-x-1}{-x^{2}-1}
Delen door -x^{2}-1 maakt de vermenigvuldiging met -x^{2}-1 ongedaan.
k=\frac{x^{2}+x+1}{x^{2}+1}
Deel -x^{2}-x-1 door -x^{2}-1.
x^{2}-kx^{2}+x+1-k=0
Gebruik de distributieve eigenschap om 1-k te vermenigvuldigen met x^{2}.
-kx^{2}+x+1-k=-x^{2}
Trek aan beide kanten x^{2} af. Een waarde afgetrokken van nul retourneert de bijbehorende negatie.
-kx^{2}+1-k=-x^{2}-x
Trek aan beide kanten x af.
-kx^{2}-k=-x^{2}-x-1
Trek aan beide kanten 1 af.
\left(-x^{2}-1\right)k=-x^{2}-x-1
Combineer alle termen met k.
\frac{\left(-x^{2}-1\right)k}{-x^{2}-1}=\frac{-x^{2}-x-1}{-x^{2}-1}
Deel beide zijden van de vergelijking door -x^{2}-1.
k=\frac{-x^{2}-x-1}{-x^{2}-1}
Delen door -x^{2}-1 maakt de vermenigvuldiging met -x^{2}-1 ongedaan.
k=\frac{x^{2}+x+1}{x^{2}+1}
Deel -x^{2}-x-1 door -x^{2}-1.