Overslaan en naar de inhoud gaan
Evalueren
Tick mark Image
Differentieer ten opzichte van x
Tick mark Image

Vergelijkbare problemen van Web Search

Delen

\int x\left(x^{3}+15x^{2}+75x+125\right)\mathrm{d}x
Gebruik het binomium van Newton \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} om \left(x+5\right)^{3} uit te breiden.
\int x^{4}+15x^{3}+75x^{2}+125x\mathrm{d}x
Gebruik de distributieve eigenschap om x te vermenigvuldigen met x^{3}+15x^{2}+75x+125.
\int x^{4}\mathrm{d}x+\int 15x^{3}\mathrm{d}x+\int 75x^{2}\mathrm{d}x+\int 125x\mathrm{d}x
Integreer de som per voorwaarde.
\int x^{4}\mathrm{d}x+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Factoriseer de constante in elk van de voorwaarden.
\frac{x^{5}}{5}+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Vervang \int x^{4}\mathrm{d}x door \frac{x^{5}}{5}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Vervang \int x^{3}\mathrm{d}x door \frac{x^{4}}{4}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1. Vermenigvuldig 15 met \frac{x^{4}}{4}.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+125\int x\mathrm{d}x
Vervang \int x^{2}\mathrm{d}x door \frac{x^{3}}{3}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1. Vermenigvuldig 75 met \frac{x^{3}}{3}.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+\frac{125x^{2}}{2}
Vervang \int x\mathrm{d}x door \frac{x^{2}}{2}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1. Vermenigvuldig 125 met \frac{x^{2}}{2}.
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}
Vereenvoudig.
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}+С
Als F\left(x\right) een primitieve functie is van f\left(x\right), wordt de set van alle antiderivatives van f\left(x\right) gegeven door F\left(x\right)+C. Voeg daarom de constante van integratie C\in \mathrm{R} toe aan het resultaat.