Overslaan en naar de inhoud gaan
Evalueren
Tick mark Image
Differentieer ten opzichte van x
Tick mark Image

Vergelijkbare problemen van Web Search

Delen

\int x^{2}\mathrm{d}x+\int 5x^{4}\mathrm{d}x
Integreer de som per voorwaarde.
\int x^{2}\mathrm{d}x+5\int x^{4}\mathrm{d}x
Factoriseer de constante in elk van de voorwaarden.
\frac{x^{3}}{3}+5\int x^{4}\mathrm{d}x
Vervang \int x^{2}\mathrm{d}x door \frac{x^{3}}{3}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1.
\frac{x^{3}}{3}+x^{5}
Vervang \int x^{4}\mathrm{d}x door \frac{x^{5}}{5}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1. Vermenigvuldig 5 met \frac{x^{5}}{5}.
\frac{x^{3}}{3}+x^{5}+С
Als F\left(x\right) een primitieve functie is van f\left(x\right), wordt de set van alle antiderivatives van f\left(x\right) gegeven door F\left(x\right)+C. Voeg daarom de constante van integratie C\in \mathrm{R} toe aan het resultaat.