Oplossen voor a
\left\{\begin{matrix}a=-\frac{\sqrt{1+\left(fx\right)^{2}+6fx-2fx^{2}}+1}{f}\text{; }a=\frac{\sqrt{1+\left(fx\right)^{2}+6fx-2fx^{2}}-1}{f}\text{, }&\left(f\neq 0\text{ and }x\leq 4\text{ and }x\geq 2\right)\text{ or }\left(f\neq 0\text{ and }f\leq -\frac{2\sqrt{x^{4}-6x^{3}+8x^{2}}-2x^{2}+6x}{2x^{2}}\right)\text{ or }\left(f\neq 0\text{ and }x>2\text{ and }x<4\right)\text{ or }\left(f\neq 0\text{ and }x=0\right)\text{ or }\left(f\neq 0\text{ and }f\geq \frac{2\sqrt{x^{4}-6x^{3}+8x^{2}}+2x^{2}-6x}{2x^{2}}\right)\\a=x\left(3-x\right)\text{, }&f=0\end{matrix}\right,
Oplossen voor f
\left\{\begin{matrix}f=-\frac{-x^{2}+3x-a}{t\left(x-a\right)}\text{, }&a\neq x\text{ and }t\neq 0\\f\in \mathrm{R}\text{, }&\left(a=0\text{ and }x=0\right)\text{ or }\left(a=2\text{ and }x=2\right)\text{ or }\left(a=x\left(3-x\right)\text{ and }t=0\text{ and }x\neq 2\text{ and }x\neq 0\right)\end{matrix}\right,
Delen
Gekopieerd naar klembord
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}