Evalueren
\frac{16}{3}\approx 5,333333333
Quiz
Integration
5 opgaven vergelijkbaar met:
\int _ { 0 } ^ { 1 } 2 ^ { 2 } ( 2 x ) \cdot ( 2 x ) d x
Delen
Gekopieerd naar klembord
\int _{0}^{1}2^{3}x\times 2x\mathrm{d}x
Als u machten met hetzelfde grondtal wilt vermenigvuldigen, telt u de bijbehorende exponenten bij elkaar op. Tel 2 en 1 op om 3 te krijgen.
\int _{0}^{1}2^{4}xx\mathrm{d}x
Als u machten met hetzelfde grondtal wilt vermenigvuldigen, telt u de bijbehorende exponenten bij elkaar op. Tel 3 en 1 op om 4 te krijgen.
\int _{0}^{1}2^{4}x^{2}\mathrm{d}x
Vermenigvuldig x en x om x^{2} te krijgen.
\int _{0}^{1}16x^{2}\mathrm{d}x
Bereken 2 tot de macht van 4 en krijg 16.
\int 16x^{2}\mathrm{d}x
Evalueer eerst de onbeperkte integraal.
16\int x^{2}\mathrm{d}x
Factoriseer de constante met gebruikmaking van \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{16x^{3}}{3}
Vervang \int x^{2}\mathrm{d}x door \frac{x^{3}}{3}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1.
\frac{16}{3}\times 1^{3}-\frac{16}{3}\times 0^{3}
De bepaalde integraal is de primitieve functie van de expressie geëvalueerd op de bovenste integratiegrens min de primitieve functie geëvalueerd op de onderste integratiegrens.
\frac{16}{3}
Vereenvoudig.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}