Overslaan en naar de inhoud gaan
Evalueren
Tick mark Image
Differentieer ten opzichte van x
Tick mark Image

Vergelijkbare problemen van Web Search

Delen

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{2}+xy})
Gebruik de distributieve eigenschap om x te vermenigvuldigen met x+y.
-\left(x^{2}+yx^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+yx^{1})
Als F de compositie is van twee differentieerbare functies, f\left(u\right) en u=g\left(x\right), dat wil zeggen wanneer F\left(x\right)=f\left(g\left(x\right)\right), dan is de afgeleide van F de afgeleide van f ten opzichte van u maal de afgeleide van g ten opzichte van x, dat wil zeggen \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{2}+yx^{1}\right)^{-2}\left(2x^{2-1}+yx^{1-1}\right)
De afgeleide van een polynoom is de som van de afgeleiden van de bijbehorende termen. De afgeleide van een constante term is 0. De afgeleide van ax^{n} is nax^{n-1}.
\left(x^{2}+yx^{1}\right)^{-2}\left(-2x^{1}+\left(-y\right)x^{0}\right)
Vereenvoudig.
\left(x^{2}+yx\right)^{-2}\left(-2x+\left(-y\right)x^{0}\right)
Voor elke term t, t^{1}=t.
\left(x^{2}+yx\right)^{-2}\left(-2x+\left(-y\right)\times 1\right)
Voor elke term t, met uitzondering van 0, t^{0}=1.
\left(x^{2}+yx\right)^{-2}\left(-2x-y\right)
Voor elke term t, t\times 1=t en 1t=t.