Evalueren
\frac{\left(x-3\right)\left(x+4\right)\left(x^{2}-1\right)}{12}
Uitbreiden
\frac{x^{4}}{12}+\frac{x^{3}}{12}-\frac{13x^{2}}{12}-\frac{x}{12}+1
Grafiek
Delen
Gekopieerd naar klembord
\left(\frac{1}{12}x+\frac{1}{12}\times 4\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Gebruik de distributieve eigenschap om \frac{1}{12} te vermenigvuldigen met x+4.
\left(\frac{1}{12}x+\frac{4}{12}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Vermenigvuldig \frac{1}{12} en 4 om \frac{4}{12} te krijgen.
\left(\frac{1}{12}x+\frac{1}{3}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Vereenvoudig de breuk \frac{4}{12} tot de kleinste termen door 4 af te trekken en weg te strepen.
\left(\frac{1}{12}xx+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Pas de distributieve eigenschap toe door elke term van \frac{1}{12}x+\frac{1}{3} te vermenigvuldigen met elke term van x+1.
\left(\frac{1}{12}x^{2}+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Vermenigvuldig x en x om x^{2} te krijgen.
\left(\frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Combineer \frac{1}{12}x en \frac{1}{3}x om \frac{5}{12}x te krijgen.
\left(\frac{1}{12}x^{2}x+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pas de distributieve eigenschap toe door elke term van \frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3} te vermenigvuldigen met elke term van x-1.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Als u machten met hetzelfde grondtal wilt vermenigvuldigen, telt u de bijbehorende exponenten bij elkaar op. Tel 2 en 1 op om 3 te krijgen.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Vermenigvuldig x en x om x^{2} te krijgen.
\left(\frac{1}{12}x^{3}-\frac{1}{12}x^{2}+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Vermenigvuldig \frac{1}{12} en -1 om -\frac{1}{12} te krijgen.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Combineer -\frac{1}{12}x^{2} en \frac{5}{12}x^{2} om \frac{1}{3}x^{2} te krijgen.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{5}{12}x+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Vermenigvuldig \frac{5}{12} en -1 om -\frac{5}{12} te krijgen.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Combineer -\frac{5}{12}x en \frac{1}{3}x om -\frac{1}{12}x te krijgen.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3}\right)\left(x-3\right)
Vermenigvuldig \frac{1}{3} en -1 om -\frac{1}{3} te krijgen.
\frac{1}{12}x^{3}x+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pas de distributieve eigenschap toe door elke term van \frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3} te vermenigvuldigen met elke term van x-3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Als u machten met hetzelfde grondtal wilt vermenigvuldigen, telt u de bijbehorende exponenten bij elkaar op. Tel 3 en 1 op om 4 te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Als u machten met hetzelfde grondtal wilt vermenigvuldigen, telt u de bijbehorende exponenten bij elkaar op. Tel 2 en 1 op om 3 te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Vermenigvuldig x en x om x^{2} te krijgen.
\frac{1}{12}x^{4}+\frac{-3}{12}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Vermenigvuldig \frac{1}{12} en -3 om \frac{-3}{12} te krijgen.
\frac{1}{12}x^{4}-\frac{1}{4}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Vereenvoudig de breuk \frac{-3}{12} tot de kleinste termen door 3 af te trekken en weg te strepen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Combineer -\frac{1}{4}x^{3} en \frac{1}{3}x^{3} om \frac{1}{12}x^{3} te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{-3}{3}x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Vermenigvuldig \frac{1}{3} en -3 om \frac{-3}{3} te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Deel -3 door 3 om -1 te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Combineer -x^{2} en -\frac{1}{12}x^{2} om -\frac{13}{12}x^{2} te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{-\left(-3\right)}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Druk -\frac{1}{12}\left(-3\right) uit als een enkele breuk.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{3}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Vermenigvuldig -1 en -3 om 3 te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{1}{4}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Vereenvoudig de breuk \frac{3}{12} tot de kleinste termen door 3 af te trekken en weg te strepen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x-\frac{1}{3}\left(-3\right)
Combineer \frac{1}{4}x en -\frac{1}{3}x om -\frac{1}{12}x te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{-\left(-3\right)}{3}
Druk -\frac{1}{3}\left(-3\right) uit als een enkele breuk.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{3}{3}
Vermenigvuldig -1 en -3 om 3 te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+1
Deel 3 door 3 om 1 te krijgen.
\left(\frac{1}{12}x+\frac{1}{12}\times 4\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Gebruik de distributieve eigenschap om \frac{1}{12} te vermenigvuldigen met x+4.
\left(\frac{1}{12}x+\frac{4}{12}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Vermenigvuldig \frac{1}{12} en 4 om \frac{4}{12} te krijgen.
\left(\frac{1}{12}x+\frac{1}{3}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Vereenvoudig de breuk \frac{4}{12} tot de kleinste termen door 4 af te trekken en weg te strepen.
\left(\frac{1}{12}xx+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Pas de distributieve eigenschap toe door elke term van \frac{1}{12}x+\frac{1}{3} te vermenigvuldigen met elke term van x+1.
\left(\frac{1}{12}x^{2}+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Vermenigvuldig x en x om x^{2} te krijgen.
\left(\frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Combineer \frac{1}{12}x en \frac{1}{3}x om \frac{5}{12}x te krijgen.
\left(\frac{1}{12}x^{2}x+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pas de distributieve eigenschap toe door elke term van \frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3} te vermenigvuldigen met elke term van x-1.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Als u machten met hetzelfde grondtal wilt vermenigvuldigen, telt u de bijbehorende exponenten bij elkaar op. Tel 2 en 1 op om 3 te krijgen.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Vermenigvuldig x en x om x^{2} te krijgen.
\left(\frac{1}{12}x^{3}-\frac{1}{12}x^{2}+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Vermenigvuldig \frac{1}{12} en -1 om -\frac{1}{12} te krijgen.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Combineer -\frac{1}{12}x^{2} en \frac{5}{12}x^{2} om \frac{1}{3}x^{2} te krijgen.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{5}{12}x+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Vermenigvuldig \frac{5}{12} en -1 om -\frac{5}{12} te krijgen.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Combineer -\frac{5}{12}x en \frac{1}{3}x om -\frac{1}{12}x te krijgen.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3}\right)\left(x-3\right)
Vermenigvuldig \frac{1}{3} en -1 om -\frac{1}{3} te krijgen.
\frac{1}{12}x^{3}x+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pas de distributieve eigenschap toe door elke term van \frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3} te vermenigvuldigen met elke term van x-3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Als u machten met hetzelfde grondtal wilt vermenigvuldigen, telt u de bijbehorende exponenten bij elkaar op. Tel 3 en 1 op om 4 te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Als u machten met hetzelfde grondtal wilt vermenigvuldigen, telt u de bijbehorende exponenten bij elkaar op. Tel 2 en 1 op om 3 te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Vermenigvuldig x en x om x^{2} te krijgen.
\frac{1}{12}x^{4}+\frac{-3}{12}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Vermenigvuldig \frac{1}{12} en -3 om \frac{-3}{12} te krijgen.
\frac{1}{12}x^{4}-\frac{1}{4}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Vereenvoudig de breuk \frac{-3}{12} tot de kleinste termen door 3 af te trekken en weg te strepen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Combineer -\frac{1}{4}x^{3} en \frac{1}{3}x^{3} om \frac{1}{12}x^{3} te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{-3}{3}x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Vermenigvuldig \frac{1}{3} en -3 om \frac{-3}{3} te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Deel -3 door 3 om -1 te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Combineer -x^{2} en -\frac{1}{12}x^{2} om -\frac{13}{12}x^{2} te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{-\left(-3\right)}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Druk -\frac{1}{12}\left(-3\right) uit als een enkele breuk.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{3}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Vermenigvuldig -1 en -3 om 3 te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{1}{4}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Vereenvoudig de breuk \frac{3}{12} tot de kleinste termen door 3 af te trekken en weg te strepen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x-\frac{1}{3}\left(-3\right)
Combineer \frac{1}{4}x en -\frac{1}{3}x om -\frac{1}{12}x te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{-\left(-3\right)}{3}
Druk -\frac{1}{3}\left(-3\right) uit als een enkele breuk.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{3}{3}
Vermenigvuldig -1 en -3 om 3 te krijgen.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+1
Deel 3 door 3 om 1 te krijgen.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}