Overslaan en naar de inhoud gaan
Evalueren
Tick mark Image
Differentieer ten opzichte van x
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

\frac{-6}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1}
Factoriseer x^{2}-4x+3.
\frac{-6}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Vouw expressies uit en maak de bijbehorende noemers gelijk om expressies op te tellen of af te trekken. Kleinste gemene veelvoud van \left(x-3\right)\left(x-1\right) en 3-x is \left(x-3\right)\left(x-1\right). Vermenigvuldig \frac{3}{3-x} met \frac{-\left(x-1\right)}{-\left(x-1\right)}.
\frac{-6-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Aangezien \frac{-6}{\left(x-3\right)\left(x-1\right)} en \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)} dezelfde noemer hebben, kunt u ze aftrekken door hun tellers af te trekken.
\frac{-6+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Voer de vermenigvuldigingen uit in -6-3\left(-1\right)\left(x-1\right).
\frac{-9+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Combineer gelijke termen in -6+3x-3.
\frac{3\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Factoriseer de expressies die nog niet zijn gefactoriseerd in \frac{-9+3x}{\left(x-3\right)\left(x-1\right)}.
\frac{3}{x-1}-\frac{4}{x-1}
Streep x-3 weg in de teller en in de noemer.
\frac{-1}{x-1}
Aangezien \frac{3}{x-1} en \frac{4}{x-1} dezelfde noemer hebben, kunt u ze aftrekken door hun tellers af te trekken. Trek 4 af van 3 om -1 te krijgen.