Evalueren
\frac{2\left(-y^{2}+2y-2\right)}{\left(y\left(2-y\right)\right)^{2}}
Uitbreiden
-\frac{2\left(y^{2}-2y+2\right)}{\left(y\left(2-y\right)\right)^{2}}
Grafiek
Delen
Gekopieerd naar klembord
\frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}}-\frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Vouw expressies uit en maak de bijbehorende noemers gelijk om expressies op te tellen of af te trekken. Kleinste gemene veelvoud van \left(2-y\right)^{2} en y^{2} is y^{2}\left(-y+2\right)^{2}. Vermenigvuldig \frac{-1}{\left(2-y\right)^{2}} met \frac{y^{2}}{y^{2}}. Vermenigvuldig \frac{1}{y^{2}} met \frac{\left(-y+2\right)^{2}}{\left(-y+2\right)^{2}}.
\frac{-y^{2}-\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Aangezien \frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}} en \frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}} dezelfde noemer hebben, kunt u ze aftrekken door hun tellers af te trekken.
\frac{-y^{2}-y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Voer de vermenigvuldigingen uit in -y^{2}-\left(-y+2\right)^{2}.
\frac{-2y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Combineer gelijke termen in -y^{2}-y^{2}+4y-4.
\frac{-2y^{2}+4y-4}{y^{4}-4y^{3}+4y^{2}}
Breid y^{2}\left(-y+2\right)^{2} uit.
\frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}}-\frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Vouw expressies uit en maak de bijbehorende noemers gelijk om expressies op te tellen of af te trekken. Kleinste gemene veelvoud van \left(2-y\right)^{2} en y^{2} is y^{2}\left(-y+2\right)^{2}. Vermenigvuldig \frac{-1}{\left(2-y\right)^{2}} met \frac{y^{2}}{y^{2}}. Vermenigvuldig \frac{1}{y^{2}} met \frac{\left(-y+2\right)^{2}}{\left(-y+2\right)^{2}}.
\frac{-y^{2}-\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Aangezien \frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}} en \frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}} dezelfde noemer hebben, kunt u ze aftrekken door hun tellers af te trekken.
\frac{-y^{2}-y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Voer de vermenigvuldigingen uit in -y^{2}-\left(-y+2\right)^{2}.
\frac{-2y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Combineer gelijke termen in -y^{2}-y^{2}+4y-4.
\frac{-2y^{2}+4y-4}{y^{4}-4y^{3}+4y^{2}}
Breid y^{2}\left(-y+2\right)^{2} uit.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}