Overslaan en naar de inhoud gaan
Oplossen voor x
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

x^{2}\times 1^{3}=15^{2}
Variabele x kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met x^{2}.
x^{2}\times 1=15^{2}
Bereken 1 tot de macht van 3 en krijg 1.
x^{2}\times 1=225
Bereken 15 tot de macht van 2 en krijg 225.
x^{2}\times 1-225=0
Trek aan beide kanten 225 af.
x^{2}-225=0
Rangschik de termen opnieuw.
\left(x-15\right)\left(x+15\right)=0
Houd rekening met x^{2}-225. Herschrijf x^{2}-225 als x^{2}-15^{2}. Het verschil tussen de kwadraten kan worden beschouwd met behulp van de regel: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=15 x=-15
Als u oplossingen voor vergelijkingen zoekt, lost u x-15=0 en x+15=0 op.
x^{2}\times 1^{3}=15^{2}
Variabele x kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met x^{2}.
x^{2}\times 1=15^{2}
Bereken 1 tot de macht van 3 en krijg 1.
x^{2}\times 1=225
Bereken 15 tot de macht van 2 en krijg 225.
x^{2}=225
Deel beide zijden van de vergelijking door 1.
x=15 x=-15
Neem de vierkantswortel van beide zijden van de vergelijking.
x^{2}\times 1^{3}=15^{2}
Variabele x kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met x^{2}.
x^{2}\times 1=15^{2}
Bereken 1 tot de macht van 3 en krijg 1.
x^{2}\times 1=225
Bereken 15 tot de macht van 2 en krijg 225.
x^{2}\times 1-225=0
Trek aan beide kanten 225 af.
x^{2}-225=0
Rangschik de termen opnieuw.
x=\frac{0±\sqrt{0^{2}-4\left(-225\right)}}{2}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 1 voor a, 0 voor b en -225 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-225\right)}}{2}
Bereken de wortel van 0.
x=\frac{0±\sqrt{900}}{2}
Vermenigvuldig -4 met -225.
x=\frac{0±30}{2}
Bereken de vierkantswortel van 900.
x=15
Los nu de vergelijking x=\frac{0±30}{2} op als ± positief is. Deel 30 door 2.
x=-15
Los nu de vergelijking x=\frac{0±30}{2} op als ± negatief is. Deel -30 door 2.
x=15 x=-15
De vergelijking is nu opgelost.