Oplossen voor x
x = \frac{13}{5} = 2\frac{3}{5} = 2,6
Grafiek
Delen
Gekopieerd naar klembord
-2\left(x-2\right)=3\left(x-3\right)
Variabele x kan niet gelijk zijn aan 3 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met 2\left(x-3\right), de kleinste gemeenschappelijke noemer van 3-x,2.
-2x+4=3\left(x-3\right)
Gebruik de distributieve eigenschap om -2 te vermenigvuldigen met x-2.
-2x+4=3x-9
Gebruik de distributieve eigenschap om 3 te vermenigvuldigen met x-3.
-2x+4-3x=-9
Trek aan beide kanten 3x af.
-5x+4=-9
Combineer -2x en -3x om -5x te krijgen.
-5x=-9-4
Trek aan beide kanten 4 af.
-5x=-13
Trek 4 af van -9 om -13 te krijgen.
x=\frac{-13}{-5}
Deel beide zijden van de vergelijking door -5.
x=\frac{13}{5}
Breuk \frac{-13}{-5} kan worden vereenvoudigd naar \frac{13}{5} door het minteken in de noemer en in de teller weg te strepen.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}