Oplossen voor x
x=-1
x=6
Grafiek
Delen
Gekopieerd naar klembord
xx-2\times 3=5x
Variabele x kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met 2x, de kleinste gemeenschappelijke noemer van 2,x.
x^{2}-2\times 3=5x
Vermenigvuldig x en x om x^{2} te krijgen.
x^{2}-6=5x
Vermenigvuldig -2 en 3 om -6 te krijgen.
x^{2}-6-5x=0
Trek aan beide kanten 5x af.
x^{2}-5x-6=0
Rangschik de polynoom om deze de standaardvorm te geven. Rangschik de termen van de hoogste naar de laagste macht.
a+b=-5 ab=-6
Als u de vergelijking wilt oplossen, x^{2}-5x-6 u formule x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) gebruiken. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
1,-6 2,-3
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b negatief is, heeft het negatieve getal een grotere absolute waarde dan de positieve. Alle paren met gehele getallen die een product -6 geven weergeven.
1-6=-5 2-3=-1
Bereken de som voor elk paar.
a=-6 b=1
De oplossing is het paar dat de som -5 geeft.
\left(x-6\right)\left(x+1\right)
Herschrijf factor-expressie \left(x+a\right)\left(x+b\right) de verkregen waarden gebruiken.
x=6 x=-1
Als u oplossingen voor vergelijkingen zoekt, lost u x-6=0 en x+1=0 op.
xx-2\times 3=5x
Variabele x kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met 2x, de kleinste gemeenschappelijke noemer van 2,x.
x^{2}-2\times 3=5x
Vermenigvuldig x en x om x^{2} te krijgen.
x^{2}-6=5x
Vermenigvuldig -2 en 3 om -6 te krijgen.
x^{2}-6-5x=0
Trek aan beide kanten 5x af.
x^{2}-5x-6=0
Rangschik de polynoom om deze de standaardvorm te geven. Rangschik de termen van de hoogste naar de laagste macht.
a+b=-5 ab=1\left(-6\right)=-6
Als u de vergelijking wilt oplossen, verdeelt u de linker-en rechterkant van de groepering. De eerste, de linkerzijde moet worden herschreven als x^{2}+ax+bx-6. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
1,-6 2,-3
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b negatief is, heeft het negatieve getal een grotere absolute waarde dan de positieve. Alle paren met gehele getallen die een product -6 geven weergeven.
1-6=-5 2-3=-1
Bereken de som voor elk paar.
a=-6 b=1
De oplossing is het paar dat de som -5 geeft.
\left(x^{2}-6x\right)+\left(x-6\right)
Herschrijf x^{2}-5x-6 als \left(x^{2}-6x\right)+\left(x-6\right).
x\left(x-6\right)+x-6
Factoriseer xx^{2}-6x.
\left(x-6\right)\left(x+1\right)
Factoriseer de gemeenschappelijke term x-6 door gebruik te maken van distributieve eigenschap.
x=6 x=-1
Als u oplossingen voor vergelijkingen zoekt, lost u x-6=0 en x+1=0 op.
xx-2\times 3=5x
Variabele x kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met 2x, de kleinste gemeenschappelijke noemer van 2,x.
x^{2}-2\times 3=5x
Vermenigvuldig x en x om x^{2} te krijgen.
x^{2}-6=5x
Vermenigvuldig -2 en 3 om -6 te krijgen.
x^{2}-6-5x=0
Trek aan beide kanten 5x af.
x^{2}-5x-6=0
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-6\right)}}{2}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 1 voor a, -5 voor b en -6 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-6\right)}}{2}
Bereken de wortel van -5.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2}
Vermenigvuldig -4 met -6.
x=\frac{-\left(-5\right)±\sqrt{49}}{2}
Tel 25 op bij 24.
x=\frac{-\left(-5\right)±7}{2}
Bereken de vierkantswortel van 49.
x=\frac{5±7}{2}
Het tegenovergestelde van -5 is 5.
x=\frac{12}{2}
Los nu de vergelijking x=\frac{5±7}{2} op als ± positief is. Tel 5 op bij 7.
x=6
Deel 12 door 2.
x=-\frac{2}{2}
Los nu de vergelijking x=\frac{5±7}{2} op als ± negatief is. Trek 7 af van 5.
x=-1
Deel -2 door 2.
x=6 x=-1
De vergelijking is nu opgelost.
xx-2\times 3=5x
Variabele x kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met 2x, de kleinste gemeenschappelijke noemer van 2,x.
x^{2}-2\times 3=5x
Vermenigvuldig x en x om x^{2} te krijgen.
x^{2}-6=5x
Vermenigvuldig -2 en 3 om -6 te krijgen.
x^{2}-6-5x=0
Trek aan beide kanten 5x af.
x^{2}-5x=6
Voeg 6 toe aan beide zijden. Een waarde plus nul retourneert zichzelf.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
Deel -5, de coëfficiënt van de x term door 2 om -\frac{5}{2} op te halen. Voeg vervolgens het kwadraat van -\frac{5}{2} toe aan beide kanten van de vergelijking. Met deze stap wordt de linkerkant van de vergelijking een perfect vierkant.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
Bereken de wortel van -\frac{5}{2} door de wortel te berekenen van zowel de teller als de noemer van de breuk.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
Tel 6 op bij \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
Factoriseer x^{2}-5x+\frac{25}{4}. In het algemeen, wanneer x^{2}+bx+c een perfect vierkant is, kan het altijd worden gefactoreerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Neem de vierkantswortel van beide zijden van de vergelijking.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
Vereenvoudig.
x=6 x=-1
Tel aan beide kanten van de vergelijking \frac{5}{2} op.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}