Evalueren
x
Differentieer ten opzichte van x
1
Grafiek
Delen
Gekopieerd naar klembord
\frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}\times \frac{x^{2}+5x+6}{2x-10}
Deel \frac{x^{2}-8x+15}{5x^{2}+10x} door \frac{x^{2}-9}{10x^{2}} door \frac{x^{2}-8x+15}{5x^{2}+10x} te vermenigvuldigen met de omgekeerde waarde van \frac{x^{2}-9}{10x^{2}}.
\frac{10\left(x-5\right)\left(x-3\right)x^{2}}{5x\left(x-3\right)\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10}
Factoriseer de expressies die nog niet zijn gefactoriseerd in \frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}.
\frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10}
Streep 5x\left(x-3\right) weg in de teller en in de noemer.
\frac{2x\left(x-5\right)\left(x^{2}+5x+6\right)}{\left(x+2\right)\left(x+3\right)\left(2x-10\right)}
Vermenigvuldig \frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)} met \frac{x^{2}+5x+6}{2x-10} door teller maal teller en noemer maal noemer te vermenigvuldigen.
\frac{2x\left(x-5\right)\left(x+2\right)\left(x+3\right)}{2\left(x-5\right)\left(x+2\right)\left(x+3\right)}
Factoriseer de expressies die nog niet zijn gefactoriseerd.
x
Streep 2\left(x-5\right)\left(x+2\right)\left(x+3\right) weg in de teller en in de noemer.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}\times \frac{x^{2}+5x+6}{2x-10})
Deel \frac{x^{2}-8x+15}{5x^{2}+10x} door \frac{x^{2}-9}{10x^{2}} door \frac{x^{2}-8x+15}{5x^{2}+10x} te vermenigvuldigen met de omgekeerde waarde van \frac{x^{2}-9}{10x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10\left(x-5\right)\left(x-3\right)x^{2}}{5x\left(x-3\right)\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10})
Factoriseer de expressies die nog niet zijn gefactoriseerd in \frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10})
Streep 5x\left(x-3\right) weg in de teller en in de noemer.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x-5\right)\left(x^{2}+5x+6\right)}{\left(x+2\right)\left(x+3\right)\left(2x-10\right)})
Vermenigvuldig \frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)} met \frac{x^{2}+5x+6}{2x-10} door teller maal teller en noemer maal noemer te vermenigvuldigen.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x-5\right)\left(x+2\right)\left(x+3\right)}{2\left(x-5\right)\left(x+2\right)\left(x+3\right)})
Factoriseer de expressies die nog niet zijn gefactoriseerd in \frac{2x\left(x-5\right)\left(x^{2}+5x+6\right)}{\left(x+2\right)\left(x+3\right)\left(2x-10\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Streep 2\left(x-5\right)\left(x+2\right)\left(x+3\right) weg in de teller en in de noemer.
x^{1-1}
De afgeleide van ax^{n} is nax^{n-1}.
x^{0}
Trek 1 af van 1.
1
Voor elke term t, met uitzondering van 0, t^{0}=1.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}