Evalueren
\frac{\left(x+4\right)\left(x^{2}-81\right)}{2\left(2x-3\right)\left(x^{2}-9\right)}
Uitbreiden
\frac{x^{3}+4x^{2}-81x-324}{2\left(2x-3\right)\left(x^{2}-9\right)}
Grafiek
Delen
Gekopieerd naar klembord
\frac{\frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)}}{\frac{4x+6}{x+9}}
Vermenigvuldig \frac{x^{2}-16}{x^{2}-9} met \frac{2x\left(x-9\right)+3\left(x-9\right)}{2x^{2}-11x+12} door teller maal teller en noemer maal noemer te vermenigvuldigen.
\frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)\left(x+9\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)\left(4x+6\right)}
Deel \frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)} door \frac{4x+6}{x+9} door \frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)} te vermenigvuldigen met de omgekeerde waarde van \frac{4x+6}{x+9}.
\frac{\left(x-9\right)\left(x-4\right)\left(x+4\right)\left(x+9\right)\left(2x+3\right)}{2\left(x-4\right)\left(x-3\right)\left(2x-3\right)\left(x+3\right)\left(2x+3\right)}
Factoriseer de expressies die nog niet zijn gefactoriseerd.
\frac{\left(x-9\right)\left(x+4\right)\left(x+9\right)}{2\left(x-3\right)\left(2x-3\right)\left(x+3\right)}
Streep \left(x-4\right)\left(2x+3\right) weg in de teller en in de noemer.
\frac{x^{3}+4x^{2}-81x-324}{4x^{3}-6x^{2}-36x+54}
Breid de uitdrukking uit.
\frac{\frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)}}{\frac{4x+6}{x+9}}
Vermenigvuldig \frac{x^{2}-16}{x^{2}-9} met \frac{2x\left(x-9\right)+3\left(x-9\right)}{2x^{2}-11x+12} door teller maal teller en noemer maal noemer te vermenigvuldigen.
\frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)\left(x+9\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)\left(4x+6\right)}
Deel \frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)} door \frac{4x+6}{x+9} door \frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)} te vermenigvuldigen met de omgekeerde waarde van \frac{4x+6}{x+9}.
\frac{\left(x-9\right)\left(x-4\right)\left(x+4\right)\left(x+9\right)\left(2x+3\right)}{2\left(x-4\right)\left(x-3\right)\left(2x-3\right)\left(x+3\right)\left(2x+3\right)}
Factoriseer de expressies die nog niet zijn gefactoriseerd.
\frac{\left(x-9\right)\left(x+4\right)\left(x+9\right)}{2\left(x-3\right)\left(2x-3\right)\left(x+3\right)}
Streep \left(x-4\right)\left(2x+3\right) weg in de teller en in de noemer.
\frac{x^{3}+4x^{2}-81x-324}{4x^{3}-6x^{2}-36x+54}
Breid de uitdrukking uit.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}