Evalueren
\frac{4\left(m-2\right)}{15n^{2}}
Uitbreiden
\frac{4\left(m-2\right)}{15n^{2}}
Delen
Gekopieerd naar klembord
\frac{\left(m^{2}-4\right)\times 16n^{2}}{20n^{4}\left(3m+6\right)}
Deel \frac{m^{2}-4}{20n^{4}} door \frac{3m+6}{16n^{2}} door \frac{m^{2}-4}{20n^{4}} te vermenigvuldigen met de omgekeerde waarde van \frac{3m+6}{16n^{2}}.
\frac{4\left(m^{2}-4\right)}{5\left(3m+6\right)n^{2}}
Streep 4n^{2} weg in de teller en in de noemer.
\frac{4\left(m-2\right)\left(m+2\right)}{3\times 5\left(m+2\right)n^{2}}
Factoriseer de expressies die nog niet zijn gefactoriseerd.
\frac{4\left(m-2\right)}{3\times 5n^{2}}
Streep m+2 weg in de teller en in de noemer.
\frac{4m-8}{15n^{2}}
Breid de uitdrukking uit.
\frac{\left(m^{2}-4\right)\times 16n^{2}}{20n^{4}\left(3m+6\right)}
Deel \frac{m^{2}-4}{20n^{4}} door \frac{3m+6}{16n^{2}} door \frac{m^{2}-4}{20n^{4}} te vermenigvuldigen met de omgekeerde waarde van \frac{3m+6}{16n^{2}}.
\frac{4\left(m^{2}-4\right)}{5\left(3m+6\right)n^{2}}
Streep 4n^{2} weg in de teller en in de noemer.
\frac{4\left(m-2\right)\left(m+2\right)}{3\times 5\left(m+2\right)n^{2}}
Factoriseer de expressies die nog niet zijn gefactoriseerd.
\frac{4\left(m-2\right)}{3\times 5n^{2}}
Streep m+2 weg in de teller en in de noemer.
\frac{4m-8}{15n^{2}}
Breid de uitdrukking uit.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}