Evalueren
\frac{144}{x^{7}}+\frac{600}{x^{11}}+\frac{240}{x^{17}}
Differentieer ten opzichte van x
-\frac{1008}{x^{8}}-\frac{6600}{x^{12}}-\frac{4080}{x^{18}}
Delen
Gekopieerd naar klembord
\left(3x^{-6}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{-10}-8)+\left(-5x^{-10}-8\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{-6}+12)
Voor elke twee differentieerbare functies is de afgeleide van het product van twee functies de eerste functie maal de afgeleide van de tweede functie plus de tweede functie maal de afgeleide van de eerste functie.
\left(3x^{-6}+12\right)\left(-10\right)\left(-5\right)x^{-10-1}+\left(-5x^{-10}-8\right)\left(-6\right)\times 3x^{-6-1}
De afgeleide van een polynoom is de som van de afgeleiden van de bijbehorende termen. De afgeleide van een constante term is 0. De afgeleide van ax^{n} is nax^{n-1}.
\left(3x^{-6}+12\right)\times 50x^{-11}+\left(-5x^{-10}-8\right)\left(-18\right)x^{-7}
Vereenvoudig.
3x^{-6}\times 50x^{-11}+12\times 50x^{-11}+\left(-5x^{-10}-8\right)\left(-18\right)x^{-7}
Vermenigvuldig 3x^{-6}+12 met 50x^{-11}.
3x^{-6}\times 50x^{-11}+12\times 50x^{-11}-5x^{-10}\left(-18\right)x^{-7}-8\left(-18\right)x^{-7}
Vermenigvuldig -5x^{-10}-8 met -18x^{-7}.
50\times 3x^{-6-11}+50\times 12x^{-11}-5\left(-18\right)x^{-10-7}-8\left(-18\right)x^{-7}
Als u machten met hetzelfde grondtal wilt vermenigvuldigen, voegt u de bijbehorende exponenten toe.
150x^{-17}+600x^{-11}+90x^{-17}+144x^{-7}
Vereenvoudig.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}