Oplossen voor a
a=-17
Delen
Gekopieerd naar klembord
2\left(a-4\right)=7\left(a+11\right)
Vermenigvuldig beide zijden van de vergelijking met 14, de kleinste gemeenschappelijke noemer van 7,2.
2a-8=7\left(a+11\right)
Gebruik de distributieve eigenschap om 2 te vermenigvuldigen met a-4.
2a-8=7a+77
Gebruik de distributieve eigenschap om 7 te vermenigvuldigen met a+11.
2a-8-7a=77
Trek aan beide kanten 7a af.
-5a-8=77
Combineer 2a en -7a om -5a te krijgen.
-5a=77+8
Voeg 8 toe aan beide zijden.
-5a=85
Tel 77 en 8 op om 85 te krijgen.
a=\frac{85}{-5}
Deel beide zijden van de vergelijking door -5.
a=-17
Deel 85 door -5 om -17 te krijgen.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}