Overslaan en naar de inhoud gaan
Evalueren
Tick mark Image
Uitbreiden
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

\frac{3x^{2}-1}{x^{2}+5x+4}-\frac{2x}{x+1}+\frac{4}{x+4}
Trek 5 af van 4 om -1 te krijgen.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x}{x+1}+\frac{4}{x+4}
Factoriseer x^{2}+5x+4.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Vouw expressies uit en maak de bijbehorende noemers gelijk om expressies op te tellen of af te trekken. Kleinste gemene veelvoud van \left(x+1\right)\left(x+4\right) en x+1 is \left(x+1\right)\left(x+4\right). Vermenigvuldig \frac{2x}{x+1} met \frac{x+4}{x+4}.
\frac{3x^{2}-1-2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Aangezien \frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)} en \frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)} dezelfde noemer hebben, kunt u ze aftrekken door hun tellers af te trekken.
\frac{3x^{2}-1-2x^{2}-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Voer de vermenigvuldigingen uit in 3x^{2}-1-2x\left(x+4\right).
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Combineer gelijke termen in 3x^{2}-1-2x^{2}-8x.
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Vouw expressies uit en maak de bijbehorende noemers gelijk om expressies op te tellen of af te trekken. Kleinste gemene veelvoud van \left(x+1\right)\left(x+4\right) en x+4 is \left(x+1\right)\left(x+4\right). Vermenigvuldig \frac{4}{x+4} met \frac{x+1}{x+1}.
\frac{x^{2}-1-8x+4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Aangezien \frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)} en \frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)} dezelfde noemer hebben, kunt u ze toevoegen door hun tellers toe te voegen.
\frac{x^{2}-1-8x+4x+4}{\left(x+1\right)\left(x+4\right)}
Voer de vermenigvuldigingen uit in x^{2}-1-8x+4\left(x+1\right).
\frac{x^{2}+3-4x}{\left(x+1\right)\left(x+4\right)}
Combineer gelijke termen in x^{2}-1-8x+4x+4.
\frac{x^{2}+3-4x}{x^{2}+5x+4}
Breid \left(x+1\right)\left(x+4\right) uit.
\frac{3x^{2}-1}{x^{2}+5x+4}-\frac{2x}{x+1}+\frac{4}{x+4}
Trek 5 af van 4 om -1 te krijgen.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x}{x+1}+\frac{4}{x+4}
Factoriseer x^{2}+5x+4.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Vouw expressies uit en maak de bijbehorende noemers gelijk om expressies op te tellen of af te trekken. Kleinste gemene veelvoud van \left(x+1\right)\left(x+4\right) en x+1 is \left(x+1\right)\left(x+4\right). Vermenigvuldig \frac{2x}{x+1} met \frac{x+4}{x+4}.
\frac{3x^{2}-1-2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Aangezien \frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)} en \frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)} dezelfde noemer hebben, kunt u ze aftrekken door hun tellers af te trekken.
\frac{3x^{2}-1-2x^{2}-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Voer de vermenigvuldigingen uit in 3x^{2}-1-2x\left(x+4\right).
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Combineer gelijke termen in 3x^{2}-1-2x^{2}-8x.
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Vouw expressies uit en maak de bijbehorende noemers gelijk om expressies op te tellen of af te trekken. Kleinste gemene veelvoud van \left(x+1\right)\left(x+4\right) en x+4 is \left(x+1\right)\left(x+4\right). Vermenigvuldig \frac{4}{x+4} met \frac{x+1}{x+1}.
\frac{x^{2}-1-8x+4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Aangezien \frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)} en \frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)} dezelfde noemer hebben, kunt u ze toevoegen door hun tellers toe te voegen.
\frac{x^{2}-1-8x+4x+4}{\left(x+1\right)\left(x+4\right)}
Voer de vermenigvuldigingen uit in x^{2}-1-8x+4\left(x+1\right).
\frac{x^{2}+3-4x}{\left(x+1\right)\left(x+4\right)}
Combineer gelijke termen in x^{2}-1-8x+4x+4.
\frac{x^{2}+3-4x}{x^{2}+5x+4}
Breid \left(x+1\right)\left(x+4\right) uit.