Oplossen voor t
t = -\frac{14}{5} = -2\frac{4}{5} = -2,8
Delen
Gekopieerd naar klembord
5\left(3t-2\right)=4\left(5t+1\right)
Vermenigvuldig beide zijden van de vergelijking met 20, de kleinste gemeenschappelijke noemer van 4,5.
15t-10=4\left(5t+1\right)
Gebruik de distributieve eigenschap om 5 te vermenigvuldigen met 3t-2.
15t-10=20t+4
Gebruik de distributieve eigenschap om 4 te vermenigvuldigen met 5t+1.
15t-10-20t=4
Trek aan beide kanten 20t af.
-5t-10=4
Combineer 15t en -20t om -5t te krijgen.
-5t=4+10
Voeg 10 toe aan beide zijden.
-5t=14
Tel 4 en 10 op om 14 te krijgen.
t=\frac{14}{-5}
Deel beide zijden van de vergelijking door -5.
t=-\frac{14}{5}
Breuk \frac{14}{-5} kan worden herschreven als -\frac{14}{5} door het minteken af te trekken.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}