Differentieer ten opzichte van t
\frac{2t^{2}\left(3t^{2}-4t-21\right)}{-9t^{4}+12t^{3}+38t^{2}-28t-49}
Evalueren
\frac{2t^{3}}{7+2t-3t^{2}}
Delen
Gekopieerd naar klembord
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{2t^{3}}{7-3t^{2}+2t})
Tel 3 en 4 op om 7 te krijgen.
\frac{\left(-3t^{2}+2t^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}t}(2t^{3})-2t^{3}\frac{\mathrm{d}}{\mathrm{d}t}(-3t^{2}+2t^{1}+7)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Voor elke twee differentieerbare functies is de afgeleide van de quotiënt van twee functies de noemer maal de afgeleide van de teller min de teller maal de afgeleide van de noemer, gedeeld door het kwadraat van de noemer.
\frac{\left(-3t^{2}+2t^{1}+7\right)\times 3\times 2t^{3-1}-2t^{3}\left(2\left(-3\right)t^{2-1}+2t^{1-1}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
De afgeleide van een polynoom is de som van de afgeleiden van de bijbehorende termen. De afgeleide van een constante term is 0. De afgeleide van ax^{n} is nax^{n-1}.
\frac{\left(-3t^{2}+2t^{1}+7\right)\times 6t^{2}-2t^{3}\left(-6t^{1}+2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Vereenvoudig.
\frac{-3t^{2}\times 6t^{2}+2t^{1}\times 6t^{2}+7\times 6t^{2}-2t^{3}\left(-6t^{1}+2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Vermenigvuldig -3t^{2}+2t^{1}+7 met 6t^{2}.
\frac{-3t^{2}\times 6t^{2}+2t^{1}\times 6t^{2}+7\times 6t^{2}-\left(2t^{3}\left(-6\right)t^{1}+2t^{3}\times 2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Vermenigvuldig 2t^{3} met -6t^{1}+2t^{0}.
\frac{-3\times 6t^{2+2}+2\times 6t^{1+2}+7\times 6t^{2}-\left(2\left(-6\right)t^{3+1}+2\times 2t^{3}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Als u machten met hetzelfde grondtal wilt vermenigvuldigen, voegt u de bijbehorende exponenten toe.
\frac{-18t^{4}+12t^{3}+42t^{2}-\left(-12t^{4}+4t^{3}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Vereenvoudig.
\frac{-6t^{4}+8t^{3}+42t^{2}}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Combineer gelijke termen.
\frac{-6t^{4}+8t^{3}+42t^{2}}{\left(-3t^{2}+2t+7\right)^{2}}
Voor elke term t, t^{1}=t.
\frac{2t^{3}}{7-3t^{2}+2t}
Tel 3 en 4 op om 7 te krijgen.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}