Oplossen voor n (complex solution)
n=-\frac{\sqrt{9x^{4}+1560x^{2}-1680x}}{60}-\frac{x^{2}}{20}
n=\frac{\sqrt{9x^{4}+1560x^{2}-1680x}}{60}-\frac{x^{2}}{20}\text{, }x\neq 0
Oplossen voor x (complex solution)
\left\{\begin{matrix}x=\frac{-\sqrt{49+390n^{2}-90n^{3}}+7}{13-3n}\text{, }&n\neq 0\text{ and }n\neq \frac{13}{3}\\x=\frac{\sqrt{49+390n^{2}-90n^{3}}+7}{13-3n}\text{, }&n\neq \frac{13}{3}\\x=-\frac{845}{21}\text{, }&n=\frac{13}{3}\end{matrix}\right,
Oplossen voor n
n=-\frac{\sqrt{9x^{4}+1560x^{2}-1680x}}{60}-\frac{x^{2}}{20}
n=\frac{\sqrt{9x^{4}+1560x^{2}-1680x}}{60}-\frac{x^{2}}{20}\text{, }9x^{4}+1560x^{2}-1680x\geq 0\text{ and }x\neq 0
Oplossen voor x
\left\{\begin{matrix}x=\frac{-\sqrt{49+390n^{2}-90n^{3}}+7}{13-3n}\text{, }&n\neq 0\text{ and }n\neq \frac{13}{3}\text{ and }30\left(13-3n\right)n^{2}\geq -49\text{ and }49+390n^{2}-90n^{3}\geq 0\\x=\frac{\sqrt{49+390n^{2}-90n^{3}}+7}{13-3n}\text{, }&n\neq \frac{13}{3}\text{ and }390n^{2}-90n^{3}\geq -49\text{ and }49+390n^{2}-90n^{3}\geq 0\\x=-\frac{845}{21}\text{, }&n=\frac{13}{3}\end{matrix}\right,
Grafiek
Delen
Gekopieerd naar klembord
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}