Evalueren
\frac{38}{7}-\frac{18}{7}i\approx 5,428571429-2,571428571i
Reëel deel
\frac{38}{7} = 5\frac{3}{7} = 5,428571428571429
Delen
Gekopieerd naar klembord
\frac{4\times 10+4\times \left(6i\right)-6i\times 10-6\times 6i^{2}}{4-6i+\left(10+6i\right)}
Vermenigvuldig de complexe getallen 4-6i en 10+6i zoals u tweetermen zou vermenigvuldigen.
\frac{4\times 10+4\times \left(6i\right)-6i\times 10-6\times 6\left(-1\right)}{4-6i+\left(10+6i\right)}
i^{2} is per definitie -1.
\frac{40+24i-60i+36}{4-6i+\left(10+6i\right)}
Voer de vermenigvuldigingen uit in 4\times 10+4\times \left(6i\right)-6i\times 10-6\times 6\left(-1\right).
\frac{40+36+\left(24-60\right)i}{4-6i+\left(10+6i\right)}
Combineer de reële en imaginaire delen in 40+24i-60i+36.
\frac{76-36i}{4-6i+\left(10+6i\right)}
Voer de toevoegingen uit in 40+36+\left(24-60\right)i.
\frac{76-36i}{4+10+\left(-6+6\right)i}
Combineer de reële en imaginaire delen in de getallen 4-6i en 10+6i.
\frac{76-36i}{14}
Tel 4 op bij 10. Tel -6 op bij 6.
\frac{38}{7}-\frac{18}{7}i
Deel 76-36i door 14 om \frac{38}{7}-\frac{18}{7}i te krijgen.
Re(\frac{4\times 10+4\times \left(6i\right)-6i\times 10-6\times 6i^{2}}{4-6i+\left(10+6i\right)})
Vermenigvuldig de complexe getallen 4-6i en 10+6i zoals u tweetermen zou vermenigvuldigen.
Re(\frac{4\times 10+4\times \left(6i\right)-6i\times 10-6\times 6\left(-1\right)}{4-6i+\left(10+6i\right)})
i^{2} is per definitie -1.
Re(\frac{40+24i-60i+36}{4-6i+\left(10+6i\right)})
Voer de vermenigvuldigingen uit in 4\times 10+4\times \left(6i\right)-6i\times 10-6\times 6\left(-1\right).
Re(\frac{40+36+\left(24-60\right)i}{4-6i+\left(10+6i\right)})
Combineer de reële en imaginaire delen in 40+24i-60i+36.
Re(\frac{76-36i}{4-6i+\left(10+6i\right)})
Voer de toevoegingen uit in 40+36+\left(24-60\right)i.
Re(\frac{76-36i}{4+10+\left(-6+6\right)i})
Combineer de reële en imaginaire delen in de getallen 4-6i en 10+6i.
Re(\frac{76-36i}{14})
Tel 4 op bij 10. Tel -6 op bij 6.
Re(\frac{38}{7}-\frac{18}{7}i)
Deel 76-36i door 14 om \frac{38}{7}-\frac{18}{7}i te krijgen.
\frac{38}{7}
Het reële deel van \frac{38}{7}-\frac{18}{7}i is \frac{38}{7}.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}