Evalueren
\frac{\sqrt{2-\sqrt{2}}}{2}\approx 0,382683432
Delen
Gekopieerd naar klembord
\cos(\frac{\pi }{2}+\frac{\pi }{4})=\cos(\frac{\pi }{2})\cos(\frac{\pi }{4})-\sin(\frac{\pi }{4})\sin(\frac{\pi }{2})
Gebruik \cos(x+y)=\cos(x)\cos(y)-\sin(y)\sin(x) waar x=\frac{\pi }{2} en y=\frac{\pi }{4} om het resultaat te verkrijgen.
0\cos(\frac{\pi }{4})-\sin(\frac{\pi }{4})\sin(\frac{\pi }{2})
Haal de waarde van \cos(\frac{\pi }{2}) op uit de tabel met trigonometrische waarden.
0\times \frac{\sqrt{2}}{2}-\sin(\frac{\pi }{4})\sin(\frac{\pi }{2})
Haal de waarde van \cos(\frac{\pi }{4}) op uit de tabel met trigonometrische waarden.
0\times \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\sin(\frac{\pi }{2})
Haal de waarde van \sin(\frac{\pi }{4}) op uit de tabel met trigonometrische waarden.
0\times \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\times 1
Haal de waarde van \sin(\frac{\pi }{2}) op uit de tabel met trigonometrische waarden.
-\frac{\sqrt{2}}{2}
Voer de berekeningen uit.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}