Oplossen voor h (complex solution)
\left\{\begin{matrix}h=\frac{\Delta -2xr^{2}}{2rx}\text{, }&r\neq 0\text{ and }x\neq 0\\h\in \mathrm{C}\text{, }&\left(x=0\text{ or }r=0\right)\text{ and }\Delta =0\end{matrix}\right,
Oplossen voor h
\left\{\begin{matrix}h=\frac{\Delta -2xr^{2}}{2rx}\text{, }&r\neq 0\text{ and }x\neq 0\\h\in \mathrm{R}\text{, }&\left(x=0\text{ or }r=0\right)\text{ and }\Delta =0\end{matrix}\right,
Oplossen voor r (complex solution)
\left\{\begin{matrix}r=\frac{\sqrt{2x\Delta +\left(hx\right)^{2}}}{2x}-\frac{h}{2}\text{; }r=-\frac{\sqrt{2x\Delta +\left(hx\right)^{2}}}{2x}-\frac{h}{2}\text{, }&x\neq 0\\r\in \mathrm{C}\text{, }&\Delta =0\text{ and }x=0\end{matrix}\right,
Oplossen voor r
\left\{\begin{matrix}r=\frac{\sqrt{2x\Delta +\left(hx\right)^{2}}}{2x}-\frac{h}{2}\text{; }r=-\frac{\sqrt{2x\Delta +\left(hx\right)^{2}}}{2x}-\frac{h}{2}\text{, }&x\neq 0\text{ and }\left(x>0\text{ or }\Delta \leq -\frac{xh^{2}}{2}\right)\text{ and }\left(x<0\text{ or }\Delta \geq -\frac{xh^{2}}{2}\right)\\r\in \mathrm{R}\text{, }&\Delta =0\text{ and }x=0\end{matrix}\right,
Delen
Gekopieerd naar klembord
\Delta =2xr^{2}+2xrh
Gebruik de distributieve eigenschap om 2xr te vermenigvuldigen met r+h.
2xr^{2}+2xrh=\Delta
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
2xrh=\Delta -2xr^{2}
Trek aan beide kanten 2xr^{2} af.
2rxh=\Delta -2xr^{2}
De vergelijking heeft de standaardvorm.
\frac{2rxh}{2rx}=\frac{\Delta -2xr^{2}}{2rx}
Deel beide zijden van de vergelijking door 2xr.
h=\frac{\Delta -2xr^{2}}{2rx}
Delen door 2xr maakt de vermenigvuldiging met 2xr ongedaan.
h=-r+\frac{\Delta }{2rx}
Deel \Delta -2xr^{2} door 2xr.
\Delta =2xr^{2}+2xrh
Gebruik de distributieve eigenschap om 2xr te vermenigvuldigen met r+h.
2xr^{2}+2xrh=\Delta
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
2xrh=\Delta -2xr^{2}
Trek aan beide kanten 2xr^{2} af.
2rxh=\Delta -2xr^{2}
De vergelijking heeft de standaardvorm.
\frac{2rxh}{2rx}=\frac{\Delta -2xr^{2}}{2rx}
Deel beide zijden van de vergelijking door 2xr.
h=\frac{\Delta -2xr^{2}}{2rx}
Delen door 2xr maakt de vermenigvuldiging met 2xr ongedaan.
h=-r+\frac{\Delta }{2rx}
Deel \Delta -2xr^{2} door 2xr.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}