Overslaan en naar de inhoud gaan
Evalueren
Tick mark Image
Uitbreiden
Tick mark Image

Vergelijkbare problemen van Web Search

Delen

\left(\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Gebruik het binomium van Newton \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} om \left(\frac{1}{2}a+\frac{2}{3}b\right)^{3} uit te breiden.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Gebruik de distributieve eigenschap om \frac{1}{2}a-\frac{2}{3}b te vermenigvuldigen met \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3} en gelijke termen te combineren.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Houd rekening met \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right). Vermenigvuldiging kan worden omgezet in het verschil tussen de kwadraten van de regel: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Breid \left(\frac{1}{4}a^{2}\right)^{2} uit.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Als u de macht van een getal wilt verheffen tot de macht van een ander getal, vermenigvuldigt u de exponenten. Vermenigvuldig 2 en 2 om 4 te krijgen.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Bereken \frac{1}{4} tot de macht van 2 en krijg \frac{1}{16}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Breid \left(\frac{4}{9}b^{2}\right)^{2} uit.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Als u de macht van een getal wilt verheffen tot de macht van een ander getal, vermenigvuldigt u de exponenten. Vermenigvuldig 2 en 2 om 4 te krijgen.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Bereken \frac{4}{9} tot de macht van 2 en krijg \frac{16}{81}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Zoek het tegenovergestelde van elke term om het tegenovergestelde van \frac{1}{16}a^{4}-\frac{16}{81}b^{4} te krijgen.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Combineer \frac{1}{16}a^{4} en -\frac{1}{16}a^{4} om 0 te krijgen.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Combineer -\frac{16}{81}b^{4} en \frac{16}{81}b^{4} om 0 te krijgen.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}\right)^{3}
Gebruik de distributieve eigenschap om -\frac{1}{3}ab te vermenigvuldigen met \frac{1}{2}a^{2}+\frac{1}{9}b^{2}.
\left(-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}\right)^{3}
Combineer \frac{1}{6}a^{3}b en -\frac{1}{6}a^{3}b om 0 te krijgen.
\left(-\frac{1}{3}ab^{3}\right)^{3}
Combineer -\frac{8}{27}ab^{3} en -\frac{1}{27}ab^{3} om -\frac{1}{3}ab^{3} te krijgen.
\left(-\frac{1}{3}\right)^{3}a^{3}\left(b^{3}\right)^{3}
Breid \left(-\frac{1}{3}ab^{3}\right)^{3} uit.
\left(-\frac{1}{3}\right)^{3}a^{3}b^{9}
Als u de macht van een getal wilt verheffen tot de macht van een ander getal, vermenigvuldigt u de exponenten. Vermenigvuldig 3 en 3 om 9 te krijgen.
-\frac{1}{27}a^{3}b^{9}
Bereken -\frac{1}{3} tot de macht van 3 en krijg -\frac{1}{27}.
\left(\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Gebruik het binomium van Newton \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} om \left(\frac{1}{2}a+\frac{2}{3}b\right)^{3} uit te breiden.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Gebruik de distributieve eigenschap om \frac{1}{2}a-\frac{2}{3}b te vermenigvuldigen met \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3} en gelijke termen te combineren.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Houd rekening met \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right). Vermenigvuldiging kan worden omgezet in het verschil tussen de kwadraten van de regel: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Breid \left(\frac{1}{4}a^{2}\right)^{2} uit.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Als u de macht van een getal wilt verheffen tot de macht van een ander getal, vermenigvuldigt u de exponenten. Vermenigvuldig 2 en 2 om 4 te krijgen.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Bereken \frac{1}{4} tot de macht van 2 en krijg \frac{1}{16}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Breid \left(\frac{4}{9}b^{2}\right)^{2} uit.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Als u de macht van een getal wilt verheffen tot de macht van een ander getal, vermenigvuldigt u de exponenten. Vermenigvuldig 2 en 2 om 4 te krijgen.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Bereken \frac{4}{9} tot de macht van 2 en krijg \frac{16}{81}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Zoek het tegenovergestelde van elke term om het tegenovergestelde van \frac{1}{16}a^{4}-\frac{16}{81}b^{4} te krijgen.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Combineer \frac{1}{16}a^{4} en -\frac{1}{16}a^{4} om 0 te krijgen.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Combineer -\frac{16}{81}b^{4} en \frac{16}{81}b^{4} om 0 te krijgen.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}\right)^{3}
Gebruik de distributieve eigenschap om -\frac{1}{3}ab te vermenigvuldigen met \frac{1}{2}a^{2}+\frac{1}{9}b^{2}.
\left(-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}\right)^{3}
Combineer \frac{1}{6}a^{3}b en -\frac{1}{6}a^{3}b om 0 te krijgen.
\left(-\frac{1}{3}ab^{3}\right)^{3}
Combineer -\frac{8}{27}ab^{3} en -\frac{1}{27}ab^{3} om -\frac{1}{3}ab^{3} te krijgen.
\left(-\frac{1}{3}\right)^{3}a^{3}\left(b^{3}\right)^{3}
Breid \left(-\frac{1}{3}ab^{3}\right)^{3} uit.
\left(-\frac{1}{3}\right)^{3}a^{3}b^{9}
Als u de macht van een getal wilt verheffen tot de macht van een ander getal, vermenigvuldigt u de exponenten. Vermenigvuldig 3 en 3 om 9 te krijgen.
-\frac{1}{27}a^{3}b^{9}
Bereken -\frac{1}{3} tot de macht van 3 en krijg -\frac{1}{27}.