Hopp til hovedinnhold
Microsoft
|
Math Solver
Løse
Praksis
Skuespill
Emner
Pre-Algebra
Bety
Modus
Største felles faktor
Minst vanlige multiplum
Rekkefølge av operasjoner
Fraksjoner
Blandede brøker
Førsteklasses faktorisering
Eksponenter
Radikaler
Algebra
Kombiner som termer
Løse for en variabel
Faktor
Utvide
Vurdere brøker
Lineære formler
Kvadratiske ligninger
Ulikheter
Ligningssystemer
Matriser
Trigonometri
Forenkle
Vurdere
Grafer
Løs formler
Beregning
Derivater
Integraler
Grenser
Algebra innganger
Trigonometri-innganger
Kalkulus innganger
Matrise innganger
Løse
Praksis
Skuespill
Emner
Pre-Algebra
Bety
Modus
Største felles faktor
Minst vanlige multiplum
Rekkefølge av operasjoner
Fraksjoner
Blandede brøker
Førsteklasses faktorisering
Eksponenter
Radikaler
Algebra
Kombiner som termer
Løse for en variabel
Faktor
Utvide
Vurdere brøker
Lineære formler
Kvadratiske ligninger
Ulikheter
Ligningssystemer
Matriser
Trigonometri
Forenkle
Vurdere
Grafer
Løs formler
Beregning
Derivater
Integraler
Grenser
Algebra innganger
Trigonometri-innganger
Kalkulus innganger
Matrise innganger
Grunnleggende
algebra
trigonometri
beregning
statistikk
Matriser
Tegn
Evaluer
0
Spørrelek
Limits
\lim_{ x \rightarrow 0 } 5x
Lignende problemer fra nettsøk
Prove that for any c \neq 0 \lim_{x \rightarrow c}{h(x)} does not exist and that \lim_{x \rightarrow 0}{h(x)} does exist.
https://math.stackexchange.com/questions/334631/prove-that-for-any-c-neq-0-lim-x-rightarrow-chx-does-not-exist-and
Hint: take one sequence that contains only rationals and another one that contains only irrationals (both tending to c\ne 0). For the case of c=0, you can use e.g. that h is continuous at 0 ...
Proofs regarding Continuous functions 1
https://math.stackexchange.com/questions/526691/proofs-regarding-continuous-functions-1
The proof of part a) needs to be modified a bit. You have used the logic that if N \leq f(x) \leq M then xN \leq xf(x) \leq xM. This holds only when x \geq 0. It is better to change the argument ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Calculate: \lim_{x \to 0 } = x \cdot \sin(\frac{1}{x})
https://math.stackexchange.com/questions/1066434/calculate-lim-x-to-0-x-cdot-sin-frac1x
Your proof is incorrect, cause you used incorrect transform, but it has already been stated. I'll describe way to solve it. \lim_{x \to 0}\frac{\sin(\frac{1}{x})}{\frac{1}{x}} \neq 1 Hint : ...
Prove that f(x) is bounded. Please check my proof.
https://math.stackexchange.com/q/1052420
Here is another approach: Let L_0 = \lim_{x \downarrow 0} f(x), L_\infty = \lim_{x \to \infty} f(x). By definition of the limit we have some \delta>0 and N>0 such that if x \in (0, \delta), ...
Complex Function limit by investigating sequences
https://math.stackexchange.com/questions/1915934/complex-function-limit-by-investigating-sequences
If a limit as z \to 0 exists, one should be able to plug in any sequence \{ z_n \} going to zero and get the same limit. Limits of sequences are generally easier to work with. So in this case if ...
Flere Elementer
Aksje
Kopi
Kopiert til utklippstavle
Lignende problemer
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Tilbake til toppen