Solvi għal y
y=\frac{41954981558863995y_{0}}{18198511713310117}-13
Solvi għal y_0
y_{0}=\frac{18198511713310117y+236580652273031521}{41954981558863995}
Graff
Sehem
Ikkupjat fuq il-klibbord
y 0.8390996311772799 = {(13 + y)} 0.36397023426620234
Evaluate trigonometric functions in the problem
y_{0}\times 0.8390996311772799=4.73161304546063042+0.36397023426620234y
Uża l-propjetà distributtiva biex timmultiplika 13+y b'0.36397023426620234.
4.73161304546063042+0.36397023426620234y=y_{0}\times 0.8390996311772799
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
0.36397023426620234y=y_{0}\times 0.8390996311772799-4.73161304546063042
Naqqas 4.73161304546063042 miż-żewġ naħat.
0.36397023426620234y=\frac{8390996311772799y_{0}}{10000000000000000}-4.73161304546063042
L-ekwazzjoni hija f'forma standard.
\frac{0.36397023426620234y}{0.36397023426620234}=\frac{\frac{8390996311772799y_{0}}{10000000000000000}-4.73161304546063042}{0.36397023426620234}
Iddividi ż-żewġ naħat tal-ekwazzjoni b'0.36397023426620234, li hija l-istess bħal multiplikazzjoni taż-żewġ naħat bir-reċiproku tal-frazzjoni.
y=\frac{\frac{8390996311772799y_{0}}{10000000000000000}-4.73161304546063042}{0.36397023426620234}
Meta tiddividi b'0.36397023426620234 titneħħa l-multiplikazzjoni b'0.36397023426620234.
y=\frac{41954981558863995y_{0}}{18198511713310117}-13
Iddividi \frac{8390996311772799y_{0}}{10000000000000000}-4.73161304546063042 b'0.36397023426620234 billi timmultiplika \frac{8390996311772799y_{0}}{10000000000000000}-4.73161304546063042 bir-reċiproku ta' 0.36397023426620234.
y 0.8390996311772799 = {(13 + y)} 0.36397023426620234
Evaluate trigonometric functions in the problem
y_{0}\times 0.8390996311772799=4.73161304546063042+0.36397023426620234y
Uża l-propjetà distributtiva biex timmultiplika 13+y b'0.36397023426620234.
0.8390996311772799y_{0}=\frac{18198511713310117y+236580652273031521}{50000000000000000}
L-ekwazzjoni hija f'forma standard.
\frac{0.8390996311772799y_{0}}{0.8390996311772799}=\frac{18198511713310117y+236580652273031521}{0.8390996311772799\times 50000000000000000}
Iddividi ż-żewġ naħat tal-ekwazzjoni b'0.8390996311772799, li hija l-istess bħal multiplikazzjoni taż-żewġ naħat bir-reċiproku tal-frazzjoni.
y_{0}=\frac{18198511713310117y+236580652273031521}{0.8390996311772799\times 50000000000000000}
Meta tiddividi b'0.8390996311772799 titneħħa l-multiplikazzjoni b'0.8390996311772799.
y_{0}=\frac{18198511713310117y+236580652273031521}{41954981558863995}
Iddividi \frac{236580652273031521+18198511713310117y}{50000000000000000} b'0.8390996311772799 billi timmultiplika \frac{236580652273031521+18198511713310117y}{50000000000000000} bir-reċiproku ta' 0.8390996311772799.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}