Solvi għal x
x=\frac{5y}{3}
y\neq 0
Solvi għal y
y=\frac{3x}{5}
x\neq 0
Graff
Sehem
Ikkupjat fuq il-klibbord
x=y\times \frac{0.5}{0.3}
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'y.
x=y\times \frac{5}{3}
Espandi \frac{0.5}{0.3} billi timmultiplika kemm in-numeratur kif ukoll id-denominatur b'10.
x=y\times \frac{0.5}{0.3}
Il-varjabbli y ma jistax ikun ugwali għal 0 billi d-diviżjoni b'żero mhux iddefinit. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'y.
x=y\times \frac{5}{3}
Espandi \frac{0.5}{0.3} billi timmultiplika kemm in-numeratur kif ukoll id-denominatur b'10.
y\times \frac{5}{3}=x
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\frac{5}{3}y=x
L-ekwazzjoni hija f'forma standard.
\frac{\frac{5}{3}y}{\frac{5}{3}}=\frac{x}{\frac{5}{3}}
Iddividi ż-żewġ naħat tal-ekwazzjoni b'\frac{5}{3}, li hija l-istess bħal multiplikazzjoni taż-żewġ naħat bir-reċiproku tal-frazzjoni.
y=\frac{x}{\frac{5}{3}}
Meta tiddividi b'\frac{5}{3} titneħħa l-multiplikazzjoni b'\frac{5}{3}.
y=\frac{3x}{5}
Iddividi x b'\frac{5}{3} billi timmultiplika x bir-reċiproku ta' \frac{5}{3}.
y=\frac{3x}{5}\text{, }y\neq 0
Il-varjabbi y ma jistax ikun ugwali għal 0.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}