Aqbeż għall-kontenut ewlieni
Solvi għal x (complex solution)
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

x\left(0-x\right)=28\times 10^{-13}
Immultiplika 0 u 2 biex tikseb 0.
x\left(-1\right)x=28\times 10^{-13}
Xi ħaġa plus żero jirriżulta f'dan in-numru stess.
x^{2}\left(-1\right)=28\times 10^{-13}
Immultiplika x u x biex tikseb x^{2}.
x^{2}\left(-1\right)=28\times \frac{1}{10000000000000}
Ikkalkula 10 bil-power ta' -13 u tikseb \frac{1}{10000000000000}.
x^{2}\left(-1\right)=\frac{7}{2500000000000}
Immultiplika 28 u \frac{1}{10000000000000} biex tikseb \frac{7}{2500000000000}.
x^{2}=\frac{\frac{7}{2500000000000}}{-1}
Iddividi ż-żewġ naħat b'-1.
x^{2}=\frac{7}{2500000000000\left(-1\right)}
Esprimi \frac{\frac{7}{2500000000000}}{-1} bħala frazzjoni waħda.
x^{2}=\frac{7}{-2500000000000}
Immultiplika 2500000000000 u -1 biex tikseb -2500000000000.
x^{2}=-\frac{7}{2500000000000}
Frazzjoni \frac{7}{-2500000000000} tista' tinkiteb mill-ġdid bħala -\frac{7}{2500000000000} bl-estrazzjoni tas-sinjal negattiv.
x=\frac{\sqrt{70}i}{5000000} x=-\frac{\sqrt{70}i}{5000000}
L-ekwazzjoni issa solvuta.
x\left(0-x\right)=28\times 10^{-13}
Immultiplika 0 u 2 biex tikseb 0.
x\left(-1\right)x=28\times 10^{-13}
Xi ħaġa plus żero jirriżulta f'dan in-numru stess.
x^{2}\left(-1\right)=28\times 10^{-13}
Immultiplika x u x biex tikseb x^{2}.
x^{2}\left(-1\right)=28\times \frac{1}{10000000000000}
Ikkalkula 10 bil-power ta' -13 u tikseb \frac{1}{10000000000000}.
x^{2}\left(-1\right)=\frac{7}{2500000000000}
Immultiplika 28 u \frac{1}{10000000000000} biex tikseb \frac{7}{2500000000000}.
x^{2}\left(-1\right)-\frac{7}{2500000000000}=0
Naqqas \frac{7}{2500000000000} miż-żewġ naħat.
-x^{2}-\frac{7}{2500000000000}=0
Ekwazzjonijiet kwadratiċi bħal din, b'terminu x^{2} term iżda b'ebda terminu x, xorta jistgħu jiġu solvuti billi tuża l-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ladarba jitqiegħdu fil-forma standard: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-\frac{7}{2500000000000}\right)}}{2\left(-1\right)}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi -1 għal a, 0 għal b, u -\frac{7}{2500000000000} għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-\frac{7}{2500000000000}\right)}}{2\left(-1\right)}
Ikkwadra 0.
x=\frac{0±\sqrt{4\left(-\frac{7}{2500000000000}\right)}}{2\left(-1\right)}
Immultiplika -4 b'-1.
x=\frac{0±\sqrt{-\frac{7}{625000000000}}}{2\left(-1\right)}
Immultiplika 4 b'-\frac{7}{2500000000000}.
x=\frac{0±\frac{\sqrt{70}i}{2500000}}{2\left(-1\right)}
Ħu l-għerq kwadrat ta' -\frac{7}{625000000000}.
x=\frac{0±\frac{\sqrt{70}i}{2500000}}{-2}
Immultiplika 2 b'-1.
x=-\frac{\sqrt{70}i}{5000000}
Issa solvi l-ekwazzjoni x=\frac{0±\frac{\sqrt{70}i}{2500000}}{-2} fejn ± hija plus.
x=\frac{\sqrt{70}i}{5000000}
Issa solvi l-ekwazzjoni x=\frac{0±\frac{\sqrt{70}i}{2500000}}{-2} fejn ± hija minus.
x=-\frac{\sqrt{70}i}{5000000} x=\frac{\sqrt{70}i}{5000000}
L-ekwazzjoni issa solvuta.