x ^ { 2 } ( 6 \% ) ^ { 2 } + ( 1 - x ) ^ { 2 } ( 2 \% ) ^ { 2 } + 2 x ( 1 - x ) \times 012 \times 6 \% \times 2 \% = 00327
Solvi għal x (complex solution)
x=\frac{1}{10}+\frac{3}{10}i=0.1+0.3i
x=\frac{1}{10}-\frac{3}{10}i=0.1-0.3i
Graff
Sehem
Ikkupjat fuq il-klibbord
x^{2}\times \left(\frac{3}{50}\right)^{2}+\left(1-x\right)^{2}\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Naqqas il-frazzjoni \frac{6}{100} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
x^{2}\times \frac{9}{2500}+\left(1-x\right)^{2}\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Ikkalkula \frac{3}{50} bil-power ta' 2 u tikseb \frac{9}{2500}.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(1-x\right)^{2}.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \left(\frac{1}{50}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Naqqas il-frazzjoni \frac{2}{100} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \frac{1}{2500}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Ikkalkula \frac{1}{50} bil-power ta' 2 u tikseb \frac{1}{2500}.
x^{2}\times \frac{9}{2500}+\frac{1}{2500}-\frac{1}{1250}x+\frac{1}{2500}x^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Uża l-propjetà distributtiva biex timmultiplika 1-2x+x^{2} b'\frac{1}{2500}.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Ikkombina x^{2}\times \frac{9}{2500} u \frac{1}{2500}x^{2} biex tikseb \frac{1}{250}x^{2}.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Immultiplika 2 u 0 biex tikseb 0.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Immultiplika 0 u 12 biex tikseb 0.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{3}{50}\times \frac{2}{100}=0\times 0\times 327
Naqqas il-frazzjoni \frac{6}{100} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{2}{100}=0\times 0\times 327
Immultiplika 0 u \frac{3}{50} biex tikseb 0.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{1}{50}=0\times 0\times 327
Naqqas il-frazzjoni \frac{2}{100} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)=0\times 0\times 327
Immultiplika 0 u \frac{1}{50} biex tikseb 0.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0=0\times 0\times 327
Xi ħaġa mmultiplikata b'żero jirriżulta f'żero.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0\times 0\times 327
Żid \frac{1}{2500} u 0 biex tikseb \frac{1}{2500}.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0\times 327
Immultiplika 0 u 0 biex tikseb 0.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0
Immultiplika 0 u 327 biex tikseb 0.
\frac{1}{250}x^{2}-\frac{1}{1250}x+\frac{1}{2500}=0
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{\left(-\frac{1}{1250}\right)^{2}-4\times \frac{1}{250}\times \frac{1}{2500}}}{2\times \frac{1}{250}}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi \frac{1}{250} għal a, -\frac{1}{1250} għal b, u \frac{1}{2500} għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{\frac{1}{1562500}-4\times \frac{1}{250}\times \frac{1}{2500}}}{2\times \frac{1}{250}}
Ikkwadra -\frac{1}{1250} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{\frac{1}{1562500}-\frac{2}{125}\times \frac{1}{2500}}}{2\times \frac{1}{250}}
Immultiplika -4 b'\frac{1}{250}.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{\frac{1}{1562500}-\frac{1}{156250}}}{2\times \frac{1}{250}}
Immultiplika -\frac{2}{125} b'\frac{1}{2500} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur. Imbagħad naqqas il-frazzjoni għall-inqas termini jekk possibbli.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{-\frac{9}{1562500}}}{2\times \frac{1}{250}}
Żid \frac{1}{1562500} ma' -\frac{1}{156250} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
x=\frac{-\left(-\frac{1}{1250}\right)±\frac{3}{1250}i}{2\times \frac{1}{250}}
Ħu l-għerq kwadrat ta' -\frac{9}{1562500}.
x=\frac{\frac{1}{1250}±\frac{3}{1250}i}{2\times \frac{1}{250}}
L-oppost ta' -\frac{1}{1250} huwa \frac{1}{1250}.
x=\frac{\frac{1}{1250}±\frac{3}{1250}i}{\frac{1}{125}}
Immultiplika 2 b'\frac{1}{250}.
x=\frac{\frac{1}{1250}+\frac{3}{1250}i}{\frac{1}{125}}
Issa solvi l-ekwazzjoni x=\frac{\frac{1}{1250}±\frac{3}{1250}i}{\frac{1}{125}} fejn ± hija plus. Żid \frac{1}{1250} ma' \frac{3}{1250}i.
x=\frac{1}{10}+\frac{3}{10}i
Iddividi \frac{1}{1250}+\frac{3}{1250}i b'\frac{1}{125} billi timmultiplika \frac{1}{1250}+\frac{3}{1250}i bir-reċiproku ta' \frac{1}{125}.
x=\frac{\frac{1}{1250}-\frac{3}{1250}i}{\frac{1}{125}}
Issa solvi l-ekwazzjoni x=\frac{\frac{1}{1250}±\frac{3}{1250}i}{\frac{1}{125}} fejn ± hija minus. Naqqas \frac{3}{1250}i minn \frac{1}{1250}.
x=\frac{1}{10}-\frac{3}{10}i
Iddividi \frac{1}{1250}-\frac{3}{1250}i b'\frac{1}{125} billi timmultiplika \frac{1}{1250}-\frac{3}{1250}i bir-reċiproku ta' \frac{1}{125}.
x=\frac{1}{10}+\frac{3}{10}i x=\frac{1}{10}-\frac{3}{10}i
L-ekwazzjoni issa solvuta.
x^{2}\times \left(\frac{3}{50}\right)^{2}+\left(1-x\right)^{2}\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Naqqas il-frazzjoni \frac{6}{100} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
x^{2}\times \frac{9}{2500}+\left(1-x\right)^{2}\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Ikkalkula \frac{3}{50} bil-power ta' 2 u tikseb \frac{9}{2500}.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(1-x\right)^{2}.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \left(\frac{1}{50}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Naqqas il-frazzjoni \frac{2}{100} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \frac{1}{2500}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Ikkalkula \frac{1}{50} bil-power ta' 2 u tikseb \frac{1}{2500}.
x^{2}\times \frac{9}{2500}+\frac{1}{2500}-\frac{1}{1250}x+\frac{1}{2500}x^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Uża l-propjetà distributtiva biex timmultiplika 1-2x+x^{2} b'\frac{1}{2500}.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Ikkombina x^{2}\times \frac{9}{2500} u \frac{1}{2500}x^{2} biex tikseb \frac{1}{250}x^{2}.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Immultiplika 2 u 0 biex tikseb 0.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
Immultiplika 0 u 12 biex tikseb 0.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{3}{50}\times \frac{2}{100}=0\times 0\times 327
Naqqas il-frazzjoni \frac{6}{100} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{2}{100}=0\times 0\times 327
Immultiplika 0 u \frac{3}{50} biex tikseb 0.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{1}{50}=0\times 0\times 327
Naqqas il-frazzjoni \frac{2}{100} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)=0\times 0\times 327
Immultiplika 0 u \frac{1}{50} biex tikseb 0.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0=0\times 0\times 327
Xi ħaġa mmultiplikata b'żero jirriżulta f'żero.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0\times 0\times 327
Żid \frac{1}{2500} u 0 biex tikseb \frac{1}{2500}.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0\times 327
Immultiplika 0 u 0 biex tikseb 0.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0
Immultiplika 0 u 327 biex tikseb 0.
\frac{1}{250}x^{2}-\frac{1}{1250}x=-\frac{1}{2500}
Naqqas \frac{1}{2500} miż-żewġ naħat. Xi ħaġa mnaqqsa minn żero tagħti numru negattiv.
\frac{\frac{1}{250}x^{2}-\frac{1}{1250}x}{\frac{1}{250}}=-\frac{\frac{1}{2500}}{\frac{1}{250}}
Immultiplika ż-żewġ naħat b'250.
x^{2}+\left(-\frac{\frac{1}{1250}}{\frac{1}{250}}\right)x=-\frac{\frac{1}{2500}}{\frac{1}{250}}
Meta tiddividi b'\frac{1}{250} titneħħa l-multiplikazzjoni b'\frac{1}{250}.
x^{2}-\frac{1}{5}x=-\frac{\frac{1}{2500}}{\frac{1}{250}}
Iddividi -\frac{1}{1250} b'\frac{1}{250} billi timmultiplika -\frac{1}{1250} bir-reċiproku ta' \frac{1}{250}.
x^{2}-\frac{1}{5}x=-\frac{1}{10}
Iddividi -\frac{1}{2500} b'\frac{1}{250} billi timmultiplika -\frac{1}{2500} bir-reċiproku ta' \frac{1}{250}.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=-\frac{1}{10}+\left(-\frac{1}{10}\right)^{2}
Iddividi -\frac{1}{5}, il-koeffiċjent tat-terminu x, b'2 biex tikseb -\frac{1}{10}. Imbagħad żid il-kwadru ta' -\frac{1}{10} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}-\frac{1}{5}x+\frac{1}{100}=-\frac{1}{10}+\frac{1}{100}
Ikkwadra -\frac{1}{10} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}-\frac{1}{5}x+\frac{1}{100}=-\frac{9}{100}
Żid -\frac{1}{10} ma' \frac{1}{100} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(x-\frac{1}{10}\right)^{2}=-\frac{9}{100}
Fattur x^{2}-\frac{1}{5}x+\frac{1}{100}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{-\frac{9}{100}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x-\frac{1}{10}=\frac{3}{10}i x-\frac{1}{10}=-\frac{3}{10}i
Issimplifika.
x=\frac{1}{10}+\frac{3}{10}i x=\frac{1}{10}-\frac{3}{10}i
Żid \frac{1}{10} maż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}