Fattur
\left(v-3\right)^{2}
Evalwa
\left(v-3\right)^{2}
Sehem
Ikkupjat fuq il-klibbord
v^{2}-6v+9
Irranġa mill-ġdid il-polynomial biex tqiegħdu fil-forma standard. Qiegħed it-termini f'ordni mill-ogħla qawwa għall-aktar baxxa.
a+b=-6 ab=1\times 9=9
Iffattura l-espressjoni bl-iggruppar. L-ewwel, l-espressjoni teħtieġ tinkiteb mill-ġdid bħala v^{2}+av+bv+9. Biex issib a u b, ikkonfigura sistema biex tiġi solvuta.
-1,-9 -3,-3
Minħabba li ab huwa pożittiv, a u b għandhom l-istess sinjal. Minħabba li a+b huwa negattiv, a u b huma t-tnejn negattiv. Elenka l-pari kollha bħal dawn li jagħtu prodott 9.
-1-9=-10 -3-3=-6
Ikkalkula s-somma għal kull par.
a=-3 b=-3
Is-soluzzjoni hija l-par li jagħti s-somma -6.
\left(v^{2}-3v\right)+\left(-3v+9\right)
Erġa' ikteb v^{2}-6v+9 bħala \left(v^{2}-3v\right)+\left(-3v+9\right).
v\left(v-3\right)-3\left(v-3\right)
Fattur v fl-ewwel u -3 fit-tieni grupp.
\left(v-3\right)\left(v-3\right)
Iffattura 'l barra t-terminu komuni v-3 bl-użu ta' propjetà distributtiva.
\left(v-3\right)^{2}
Erġa' ikteb bħala kwadrat binomial.
factor(v^{2}-6v+9)
Dan it-trinomial għandu l-forma ta' kwadrat trinomial, forsi mmultiplikat b'fattur komuni. Kwadrati trinomial ikunu jistgħu jiġu fatturati billi jsibu l-għeruq kwadrati tat-termini ewlenin u finali.
\sqrt{9}=3
Sib l-għerq kwadrat tat-terminu finali, 9.
\left(v-3\right)^{2}
Il-kwadrat trinomial huwa l-kwadrat tal-binomial li huwa s-somma jew id-differenza ta' l-għeruq kwadrat tat-termini ewlenija u finali, bis-sinjal determinat mis-sinjal tat-terminu tan-nofs tal-kwadrat trinomial.
v^{2}-6v+9=0
Polynomial kwadratika tista' tiġi fatturata billi tuża t-trasformazzjoni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), fejn x_{1} u x_{2} huma s-soluzzjonijiet tal-ekwazzjoni kwadratika ax^{2}+bx+c=0.
v=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
v=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Ikkwadra -6.
v=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Immultiplika -4 b'9.
v=\frac{-\left(-6\right)±\sqrt{0}}{2}
Żid 36 ma' -36.
v=\frac{-\left(-6\right)±0}{2}
Ħu l-għerq kwadrat ta' 0.
v=\frac{6±0}{2}
L-oppost ta' -6 huwa 6.
v^{2}-6v+9=\left(v-3\right)\left(v-3\right)
Iffattura l-espressjoni oriġinali permezz ta’ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Issostitwixxi 3 għal x_{1} u 3 għal x_{2}.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}