Solvi għal r
r=3
Sehem
Ikkupjat fuq il-klibbord
r^{2}-5r+9-r=0
Naqqas r miż-żewġ naħat.
r^{2}-6r+9=0
Ikkombina -5r u -r biex tikseb -6r.
a+b=-6 ab=9
Biex issolvi l-ekwazzjoni, iffattura r^{2}-6r+9 billi tuża l-formula r^{2}+\left(a+b\right)r+ab=\left(r+a\right)\left(r+b\right). Biex issib a u b, ikkonfigura sistema biex tiġi solvuta.
-1,-9 -3,-3
Minħabba li ab huwa pożittiv, a u b għandhom l-istess sinjal. Minħabba li a+b huwa negattiv, a u b huma t-tnejn negattiv. Elenka l-pari kollha bħal dawn li jagħtu prodott 9.
-1-9=-10 -3-3=-6
Ikkalkula s-somma għal kull par.
a=-3 b=-3
Is-soluzzjoni hija l-par li jagħti s-somma -6.
\left(r-3\right)\left(r-3\right)
Erġa' ikteb l-espressjoni ffatturata \left(r+a\right)\left(r+b\right) billi tuża l-valuri miksuba.
\left(r-3\right)^{2}
Erġa' ikteb bħala kwadrat binomial.
r=3
Biex issib soluzzjoni tal-ekwazzjoni, solvi r-3=0.
r^{2}-5r+9-r=0
Naqqas r miż-żewġ naħat.
r^{2}-6r+9=0
Ikkombina -5r u -r biex tikseb -6r.
a+b=-6 ab=1\times 9=9
Biex issolvi l-ekwazzjoni, iffatura n-naħa tax-xellug bl-iggruppar. L-ewwel, in-naħa tax-xellug jeħtieġ tinkiteb mill-ġdid bħala r^{2}+ar+br+9. Biex issib a u b, ikkonfigura sistema biex tiġi solvuta.
-1,-9 -3,-3
Minħabba li ab huwa pożittiv, a u b għandhom l-istess sinjal. Minħabba li a+b huwa negattiv, a u b huma t-tnejn negattiv. Elenka l-pari kollha bħal dawn li jagħtu prodott 9.
-1-9=-10 -3-3=-6
Ikkalkula s-somma għal kull par.
a=-3 b=-3
Is-soluzzjoni hija l-par li jagħti s-somma -6.
\left(r^{2}-3r\right)+\left(-3r+9\right)
Erġa' ikteb r^{2}-6r+9 bħala \left(r^{2}-3r\right)+\left(-3r+9\right).
r\left(r-3\right)-3\left(r-3\right)
Fattur r fl-ewwel u -3 fit-tieni grupp.
\left(r-3\right)\left(r-3\right)
Iffattura 'l barra t-terminu komuni r-3 bl-użu ta' propjetà distributtiva.
\left(r-3\right)^{2}
Erġa' ikteb bħala kwadrat binomial.
r=3
Biex issib soluzzjoni tal-ekwazzjoni, solvi r-3=0.
r^{2}-5r+9-r=0
Naqqas r miż-żewġ naħat.
r^{2}-6r+9=0
Ikkombina -5r u -r biex tikseb -6r.
r=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 1 għal a, -6 għal b, u 9 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Ikkwadra -6.
r=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Immultiplika -4 b'9.
r=\frac{-\left(-6\right)±\sqrt{0}}{2}
Żid 36 ma' -36.
r=-\frac{-6}{2}
Ħu l-għerq kwadrat ta' 0.
r=\frac{6}{2}
L-oppost ta' -6 huwa 6.
r=3
Iddividi 6 b'2.
r^{2}-5r+9-r=0
Naqqas r miż-żewġ naħat.
r^{2}-6r+9=0
Ikkombina -5r u -r biex tikseb -6r.
\left(r-3\right)^{2}=0
Fattur r^{2}-6r+9. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-3\right)^{2}}=\sqrt{0}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
r-3=0 r-3=0
Issimplifika.
r=3 r=3
Żid 3 maż-żewġ naħat tal-ekwazzjoni.
r=3
L-ekwazzjoni issa solvuta. Is-soluzzjonijiet huma l-istess.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}