Aqbeż għall-kontenut ewlieni
Solvi għal V
Tick mark Image
Solvi għal g
Tick mark Image

Sehem

g\times 2\times \frac{1}{10000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
Ikkalkula 10 bil-power ta' -7 u tikseb \frac{1}{10000000}.
g\times \frac{1}{5000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
Immultiplika 2 u \frac{1}{10000000} biex tikseb \frac{1}{5000000}.
g\times \frac{1}{5000000}=\frac{1334000\times 10^{-11}V}{1700^{2}}
Immultiplika 2000 u 667 biex tikseb 1334000.
g\times \frac{1}{5000000}=\frac{1334000\times \frac{1}{100000000000}V}{1700^{2}}
Ikkalkula 10 bil-power ta' -11 u tikseb \frac{1}{100000000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{1700^{2}}
Immultiplika 1334000 u \frac{1}{100000000000} biex tikseb \frac{667}{50000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{2890000}
Ikkalkula 1700 bil-power ta' 2 u tikseb 2890000.
g\times \frac{1}{5000000}=\frac{667}{144500000000000}V
Iddividi \frac{667}{50000000}V b'2890000 biex tikseb\frac{667}{144500000000000}V.
\frac{667}{144500000000000}V=g\times \frac{1}{5000000}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\frac{667}{144500000000000}V=\frac{g}{5000000}
L-ekwazzjoni hija f'forma standard.
\frac{\frac{667}{144500000000000}V}{\frac{667}{144500000000000}}=\frac{g}{\frac{667}{144500000000000}\times 5000000}
Iddividi ż-żewġ naħat tal-ekwazzjoni b'\frac{667}{144500000000000}, li hija l-istess bħal multiplikazzjoni taż-żewġ naħat bir-reċiproku tal-frazzjoni.
V=\frac{g}{\frac{667}{144500000000000}\times 5000000}
Meta tiddividi b'\frac{667}{144500000000000} titneħħa l-multiplikazzjoni b'\frac{667}{144500000000000}.
V=\frac{28900000g}{667}
Iddividi \frac{g}{5000000} b'\frac{667}{144500000000000} billi timmultiplika \frac{g}{5000000} bir-reċiproku ta' \frac{667}{144500000000000}.
g\times 2\times \frac{1}{10000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
Ikkalkula 10 bil-power ta' -7 u tikseb \frac{1}{10000000}.
g\times \frac{1}{5000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
Immultiplika 2 u \frac{1}{10000000} biex tikseb \frac{1}{5000000}.
g\times \frac{1}{5000000}=\frac{1334000\times 10^{-11}V}{1700^{2}}
Immultiplika 2000 u 667 biex tikseb 1334000.
g\times \frac{1}{5000000}=\frac{1334000\times \frac{1}{100000000000}V}{1700^{2}}
Ikkalkula 10 bil-power ta' -11 u tikseb \frac{1}{100000000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{1700^{2}}
Immultiplika 1334000 u \frac{1}{100000000000} biex tikseb \frac{667}{50000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{2890000}
Ikkalkula 1700 bil-power ta' 2 u tikseb 2890000.
g\times \frac{1}{5000000}=\frac{667}{144500000000000}V
Iddividi \frac{667}{50000000}V b'2890000 biex tikseb\frac{667}{144500000000000}V.
\frac{1}{5000000}g=\frac{667V}{144500000000000}
L-ekwazzjoni hija f'forma standard.
\frac{\frac{1}{5000000}g}{\frac{1}{5000000}}=\frac{667V}{\frac{1}{5000000}\times 144500000000000}
Immultiplika ż-żewġ naħat b'5000000.
g=\frac{667V}{\frac{1}{5000000}\times 144500000000000}
Meta tiddividi b'\frac{1}{5000000} titneħħa l-multiplikazzjoni b'\frac{1}{5000000}.
g=\frac{667V}{28900000}
Iddividi \frac{667V}{144500000000000} b'\frac{1}{5000000} billi timmultiplika \frac{667V}{144500000000000} bir-reċiproku ta' \frac{1}{5000000}.