Aqbeż għall-kontenut ewlieni
Fattur
Tick mark Image
Evalwa
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

5x^{2}+20x+11=0
Polynomial kwadratika tista' tiġi fatturata billi tuża t-trasformazzjoni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), fejn x_{1} u x_{2} huma s-soluzzjonijiet tal-ekwazzjoni kwadratika ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\times 5\times 11}}{2\times 5}
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-20±\sqrt{400-4\times 5\times 11}}{2\times 5}
Ikkwadra 20.
x=\frac{-20±\sqrt{400-20\times 11}}{2\times 5}
Immultiplika -4 b'5.
x=\frac{-20±\sqrt{400-220}}{2\times 5}
Immultiplika -20 b'11.
x=\frac{-20±\sqrt{180}}{2\times 5}
Żid 400 ma' -220.
x=\frac{-20±6\sqrt{5}}{2\times 5}
Ħu l-għerq kwadrat ta' 180.
x=\frac{-20±6\sqrt{5}}{10}
Immultiplika 2 b'5.
x=\frac{6\sqrt{5}-20}{10}
Issa solvi l-ekwazzjoni x=\frac{-20±6\sqrt{5}}{10} fejn ± hija plus. Żid -20 ma' 6\sqrt{5}.
x=\frac{3\sqrt{5}}{5}-2
Iddividi -20+6\sqrt{5} b'10.
x=\frac{-6\sqrt{5}-20}{10}
Issa solvi l-ekwazzjoni x=\frac{-20±6\sqrt{5}}{10} fejn ± hija minus. Naqqas 6\sqrt{5} minn -20.
x=-\frac{3\sqrt{5}}{5}-2
Iddividi -20-6\sqrt{5} b'10.
5x^{2}+20x+11=5\left(x-\left(\frac{3\sqrt{5}}{5}-2\right)\right)\left(x-\left(-\frac{3\sqrt{5}}{5}-2\right)\right)
Iffattura l-espressjoni oriġinali permezz ta’ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Issostitwixxi -2+\frac{3\sqrt{5}}{5} għal x_{1} u -2-\frac{3\sqrt{5}}{5} għal x_{2}.