Aqbeż għall-kontenut ewlieni
Fattur
Tick mark Image
Evalwa
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

-x^{2}-3x+1=0
Polynomial kwadratika tista' tiġi fatturata billi tuża t-trasformazzjoni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), fejn x_{1} u x_{2} huma s-soluzzjonijiet tal-ekwazzjoni kwadratika ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)}}{2\left(-1\right)}
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)}}{2\left(-1\right)}
Ikkwadra -3.
x=\frac{-\left(-3\right)±\sqrt{9+4}}{2\left(-1\right)}
Immultiplika -4 b'-1.
x=\frac{-\left(-3\right)±\sqrt{13}}{2\left(-1\right)}
Żid 9 ma' 4.
x=\frac{3±\sqrt{13}}{2\left(-1\right)}
L-oppost ta' -3 huwa 3.
x=\frac{3±\sqrt{13}}{-2}
Immultiplika 2 b'-1.
x=\frac{\sqrt{13}+3}{-2}
Issa solvi l-ekwazzjoni x=\frac{3±\sqrt{13}}{-2} fejn ± hija plus. Żid 3 ma' \sqrt{13}.
x=\frac{-\sqrt{13}-3}{2}
Iddividi 3+\sqrt{13} b'-2.
x=\frac{3-\sqrt{13}}{-2}
Issa solvi l-ekwazzjoni x=\frac{3±\sqrt{13}}{-2} fejn ± hija minus. Naqqas \sqrt{13} minn 3.
x=\frac{\sqrt{13}-3}{2}
Iddividi 3-\sqrt{13} b'-2.
-x^{2}-3x+1=-\left(x-\frac{-\sqrt{13}-3}{2}\right)\left(x-\frac{\sqrt{13}-3}{2}\right)
Iffattura l-espressjoni oriġinali permezz ta’ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Issostitwixxi \frac{-3-\sqrt{13}}{2} għal x_{1} u \frac{-3+\sqrt{13}}{2} għal x_{2}.