Aqbeż għall-kontenut ewlieni
Iddifferenzja w.r.t. x
Tick mark Image
Evalwa
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\left(-9x^{1}-2x^{2}+5\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(-9x^{1}-2x^{2}+5)}{\left(-9x^{1}-2x^{2}+5\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(-9x^{1}-2x^{2}+5\right)x^{1-1}-x^{1}\left(-9x^{1-1}+2\left(-2\right)x^{2-1}\right)}{\left(-9x^{1}-2x^{2}+5\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(-9x^{1}-2x^{2}+5\right)x^{0}-x^{1}\left(-9x^{0}-4x^{1}\right)}{\left(-9x^{1}-2x^{2}+5\right)^{2}}
Issimplifika.
\frac{-9x^{1}x^{0}-2x^{2}x^{0}+5x^{0}-x^{1}\left(-9x^{0}-4x^{1}\right)}{\left(-9x^{1}-2x^{2}+5\right)^{2}}
Immultiplika -9x^{1}-2x^{2}+5 b'x^{0}.
\frac{-9x^{1}x^{0}-2x^{2}x^{0}+5x^{0}-\left(x^{1}\left(-9\right)x^{0}+x^{1}\left(-4\right)x^{1}\right)}{\left(-9x^{1}-2x^{2}+5\right)^{2}}
Immultiplika x^{1} b'-9x^{0}-4x^{1}.
\frac{-9x^{1}-2x^{2}+5x^{0}-\left(-9x^{1}-4x^{1+1}\right)}{\left(-9x^{1}-2x^{2}+5\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{-9x^{1}-2x^{2}+5x^{0}-\left(-9x^{1}-4x^{2}\right)}{\left(-9x^{1}-2x^{2}+5\right)^{2}}
Issimplifika.
\frac{2x^{2}+5x^{0}}{\left(-9x^{1}-2x^{2}+5\right)^{2}}
Ikkombina termini simili.
\frac{2x^{2}+5x^{0}}{\left(-9x-2x^{2}+5\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{2x^{2}+5\times 1}{\left(-9x-2x^{2}+5\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{2x^{2}+5}{\left(-9x-2x^{2}+5\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.