Solvi għal a (complex solution)
\left\{\begin{matrix}a=-\frac{2bx}{x^{2}-c}\text{, }&c\neq x^{2}\text{ and }c\neq -x^{2}\\a\in \mathrm{C}\text{, }&b=0\text{ and }c=x^{2}\text{ and }x\neq 0\end{matrix}\right.
Solvi għal b (complex solution)
\left\{\begin{matrix}b=\frac{a\left(c-x^{2}\right)}{2x}\text{, }&x\neq 0\text{ and }c\neq -x^{2}\\b\in \mathrm{C}\text{, }&a=0\text{ and }x=0\text{ and }c\neq 0\end{matrix}\right.
Solvi għal a
\left\{\begin{matrix}a=-\frac{2bx}{x^{2}-c}\text{, }&|c|\neq x^{2}\\a\in \mathrm{R}\text{, }&b=0\text{ and }c=x^{2}\text{ and }x\neq 0\end{matrix}\right.
Solvi għal b
\left\{\begin{matrix}b=\frac{a\left(c-x^{2}\right)}{2x}\text{, }&x\neq 0\text{ and }c\neq -x^{2}\\b\in \mathrm{R}\text{, }&a=0\text{ and }x=0\text{ and }c\neq 0\end{matrix}\right.
Sehem
Ikkupjat fuq il-klibbord
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Biex tgħolli l-qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti. Immultiplika 2 u 2 biex tikseb 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Uża l-propjetà distributtiva biex timmultiplika \frac{\mathrm{d}}{\mathrm{d}x}(f)x b'x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\left(-a\right)x^{2}+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+2bx
Żid 2bx maż-żewġ naħat.
-ax^{2}+ac=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Erġa' ordna t-termini.
\left(-x^{2}+c\right)a=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Ikkombina t-termini kollha li fihom a.
\left(c-x^{2}\right)a=2bx
L-ekwazzjoni hija f'forma standard.
\frac{\left(c-x^{2}\right)a}{c-x^{2}}=\frac{2bx}{c-x^{2}}
Iddividi ż-żewġ naħat b'-x^{2}+c.
a=\frac{2bx}{c-x^{2}}
Meta tiddividi b'-x^{2}+c titneħħa l-multiplikazzjoni b'-x^{2}+c.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Biex tgħolli l-qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti. Immultiplika 2 u 2 biex tikseb 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Uża l-propjetà distributtiva biex timmultiplika \frac{\mathrm{d}}{\mathrm{d}x}(f)x b'x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}
Naqqas \left(-a\right)x^{2} miż-żewġ naħat.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}-ac
Naqqas ac miż-żewġ naħat.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+ax^{2}-ac
Immultiplika -1 u -1 biex tikseb 1.
\left(-2x\right)b=ax^{2}-ac
L-ekwazzjoni hija f'forma standard.
\frac{\left(-2x\right)b}{-2x}=\frac{a\left(x^{2}-c\right)}{-2x}
Iddividi ż-żewġ naħat b'-2x.
b=\frac{a\left(x^{2}-c\right)}{-2x}
Meta tiddividi b'-2x titneħħa l-multiplikazzjoni b'-2x.
b=-\frac{ax}{2}+\frac{ac}{2x}
Iddividi a\left(x^{2}-c\right) b'-2x.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Biex tgħolli l-qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti. Immultiplika 2 u 2 biex tikseb 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Uża l-propjetà distributtiva biex timmultiplika \frac{\mathrm{d}}{\mathrm{d}x}(f)x b'x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\left(-a\right)x^{2}+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+2bx
Żid 2bx maż-żewġ naħat.
-ax^{2}+ac=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Erġa' ordna t-termini.
\left(-x^{2}+c\right)a=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Ikkombina t-termini kollha li fihom a.
\left(c-x^{2}\right)a=2bx
L-ekwazzjoni hija f'forma standard.
\frac{\left(c-x^{2}\right)a}{c-x^{2}}=\frac{2bx}{c-x^{2}}
Iddividi ż-żewġ naħat b'-x^{2}+c.
a=\frac{2bx}{c-x^{2}}
Meta tiddividi b'-x^{2}+c titneħħa l-multiplikazzjoni b'-x^{2}+c.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Biex tgħolli l-qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti. Immultiplika 2 u 2 biex tikseb 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Uża l-propjetà distributtiva biex timmultiplika \frac{\mathrm{d}}{\mathrm{d}x}(f)x b'x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}
Naqqas \left(-a\right)x^{2} miż-żewġ naħat.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}-ac
Naqqas ac miż-żewġ naħat.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+ax^{2}-ac
Immultiplika -1 u -1 biex tikseb 1.
\left(-2x\right)b=ax^{2}-ac
L-ekwazzjoni hija f'forma standard.
\frac{\left(-2x\right)b}{-2x}=\frac{a\left(x^{2}-c\right)}{-2x}
Iddividi ż-żewġ naħat b'-2x.
b=\frac{a\left(x^{2}-c\right)}{-2x}
Meta tiddividi b'-2x titneħħa l-multiplikazzjoni b'-2x.
b=-\frac{ax}{2}+\frac{ac}{2x}
Iddividi a\left(x^{2}-c\right) b'-2x.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}