Aqbeż għall-kontenut ewlieni
Solvi għal a (complex solution)
Tick mark Image
Solvi għal b (complex solution)
Tick mark Image
Solvi għal a
Tick mark Image
Solvi għal b
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Biex tgħolli l-qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti. Immultiplika 2 u 2 biex tikseb 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Uża l-propjetà distributtiva biex timmultiplika \frac{\mathrm{d}}{\mathrm{d}x}(f)x b'x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\left(-a\right)x^{2}+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+2bx
Żid 2bx maż-żewġ naħat.
-ax^{2}+ac=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Erġa' ordna t-termini.
\left(-x^{2}+c\right)a=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Ikkombina t-termini kollha li fihom a.
\left(c-x^{2}\right)a=2bx
L-ekwazzjoni hija f'forma standard.
\frac{\left(c-x^{2}\right)a}{c-x^{2}}=\frac{2bx}{c-x^{2}}
Iddividi ż-żewġ naħat b'-x^{2}+c.
a=\frac{2bx}{c-x^{2}}
Meta tiddividi b'-x^{2}+c titneħħa l-multiplikazzjoni b'-x^{2}+c.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Biex tgħolli l-qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti. Immultiplika 2 u 2 biex tikseb 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Uża l-propjetà distributtiva biex timmultiplika \frac{\mathrm{d}}{\mathrm{d}x}(f)x b'x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}
Naqqas \left(-a\right)x^{2} miż-żewġ naħat.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}-ac
Naqqas ac miż-żewġ naħat.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+ax^{2}-ac
Immultiplika -1 u -1 biex tikseb 1.
\left(-2x\right)b=ax^{2}-ac
L-ekwazzjoni hija f'forma standard.
\frac{\left(-2x\right)b}{-2x}=\frac{a\left(x^{2}-c\right)}{-2x}
Iddividi ż-żewġ naħat b'-2x.
b=\frac{a\left(x^{2}-c\right)}{-2x}
Meta tiddividi b'-2x titneħħa l-multiplikazzjoni b'-2x.
b=-\frac{ax}{2}+\frac{ac}{2x}
Iddividi a\left(x^{2}-c\right) b'-2x.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Biex tgħolli l-qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti. Immultiplika 2 u 2 biex tikseb 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Uża l-propjetà distributtiva biex timmultiplika \frac{\mathrm{d}}{\mathrm{d}x}(f)x b'x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\left(-a\right)x^{2}+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+2bx
Żid 2bx maż-żewġ naħat.
-ax^{2}+ac=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Erġa' ordna t-termini.
\left(-x^{2}+c\right)a=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Ikkombina t-termini kollha li fihom a.
\left(c-x^{2}\right)a=2bx
L-ekwazzjoni hija f'forma standard.
\frac{\left(c-x^{2}\right)a}{c-x^{2}}=\frac{2bx}{c-x^{2}}
Iddividi ż-żewġ naħat b'-x^{2}+c.
a=\frac{2bx}{c-x^{2}}
Meta tiddividi b'-x^{2}+c titneħħa l-multiplikazzjoni b'-x^{2}+c.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Biex tgħolli l-qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti. Immultiplika 2 u 2 biex tikseb 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Uża l-propjetà distributtiva biex timmultiplika \frac{\mathrm{d}}{\mathrm{d}x}(f)x b'x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}
Naqqas \left(-a\right)x^{2} miż-żewġ naħat.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}-ac
Naqqas ac miż-żewġ naħat.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+ax^{2}-ac
Immultiplika -1 u -1 biex tikseb 1.
\left(-2x\right)b=ax^{2}-ac
L-ekwazzjoni hija f'forma standard.
\frac{\left(-2x\right)b}{-2x}=\frac{a\left(x^{2}-c\right)}{-2x}
Iddividi ż-żewġ naħat b'-2x.
b=\frac{a\left(x^{2}-c\right)}{-2x}
Meta tiddividi b'-2x titneħħa l-multiplikazzjoni b'-2x.
b=-\frac{ax}{2}+\frac{ac}{2x}
Iddividi a\left(x^{2}-c\right) b'-2x.