Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. P_0
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

P_{0}e^{0\times 0\times 0\times 12t}
Immultiplika 0 u 0 biex tikseb 0.
P_{0}e^{0\times 0\times 12t}
Immultiplika 0 u 0 biex tikseb 0.
P_{0}e^{0\times 12t}
Immultiplika 0 u 0 biex tikseb 0.
P_{0}e^{0t}
Immultiplika 0 u 12 biex tikseb 0.
P_{0}e^{0}
Xi ħaġa mmultiplikata b'żero jirriżulta f'żero.
P_{0}\times 1
Ikkalkula e bil-power ta' 0 u tikseb 1.
P_{0}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.
\frac{\mathrm{d}}{\mathrm{d}P_{0}}(P_{0}e^{0\times 0\times 0\times 12t})
Immultiplika 0 u 0 biex tikseb 0.
\frac{\mathrm{d}}{\mathrm{d}P_{0}}(P_{0}e^{0\times 0\times 12t})
Immultiplika 0 u 0 biex tikseb 0.
\frac{\mathrm{d}}{\mathrm{d}P_{0}}(P_{0}e^{0\times 12t})
Immultiplika 0 u 0 biex tikseb 0.
\frac{\mathrm{d}}{\mathrm{d}P_{0}}(P_{0}e^{0t})
Immultiplika 0 u 12 biex tikseb 0.
\frac{\mathrm{d}}{\mathrm{d}P_{0}}(P_{0}e^{0})
Xi ħaġa mmultiplikata b'żero jirriżulta f'żero.
\frac{\mathrm{d}}{\mathrm{d}P_{0}}(P_{0}\times 1)
Ikkalkula e bil-power ta' 0 u tikseb 1.
P_{0}^{1-1}
Id-derivattiv ta' ax^{n} huwa nax^{n-1}.
P_{0}^{0}
Naqqas 1 minn 1.
1
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.