Aqbeż għall-kontenut ewlieni
Solvi għal B
Tick mark Image
Assenja B (complex solution)
Tick mark Image
Assenja B
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

B=\frac{\sqrt{2}-\sqrt{7}}{5-2\sqrt{2}}
Iffattura 8=2^{2}\times 2. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2^{2}\times 2} bħala l-prodott tal-għeruq kwadrati \sqrt{2^{2}}\sqrt{2}. Ħu l-għerq kwadrat ta' 2^{2}.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{\left(5-2\sqrt{2}\right)\left(5+2\sqrt{2}\right)}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{2}-\sqrt{7}}{5-2\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-5+2\sqrt{2}.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{5^{2}-\left(-2\sqrt{2}\right)^{2}}
Ikkunsidra li \left(5-2\sqrt{2}\right)\left(5+2\sqrt{2}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-\left(-2\sqrt{2}\right)^{2}}
Ikkalkula 5 bil-power ta' 2 u tikseb 25.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}
Espandi \left(-2\sqrt{2}\right)^{2}.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-4\left(\sqrt{2}\right)^{2}}
Ikkalkula -2 bil-power ta' 2 u tikseb 4.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-4\times 2}
Il-kwadrat ta' \sqrt{2} huwa 2.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-8}
Immultiplika 4 u 2 biex tikseb 8.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{17}
Naqqas 8 minn 25 biex tikseb 17.
B=\frac{5\sqrt{2}+2\left(\sqrt{2}\right)^{2}-5\sqrt{7}-2\sqrt{7}\sqrt{2}}{17}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' \sqrt{2}-\sqrt{7} b'kull terminu ta' 5+2\sqrt{2}.
B=\frac{5\sqrt{2}+2\times 2-5\sqrt{7}-2\sqrt{7}\sqrt{2}}{17}
Il-kwadrat ta' \sqrt{2} huwa 2.
B=\frac{5\sqrt{2}+4-5\sqrt{7}-2\sqrt{7}\sqrt{2}}{17}
Immultiplika 2 u 2 biex tikseb 4.
B=\frac{5\sqrt{2}+4-5\sqrt{7}-2\sqrt{14}}{17}
Biex timmultiplika \sqrt{7} u \sqrt{2}, immultiplika n-numri taħt l-għerq kwadrat.
B=\frac{5}{17}\sqrt{2}+\frac{4}{17}-\frac{5}{17}\sqrt{7}-\frac{2}{17}\sqrt{14}
Iddividi kull terminu ta' 5\sqrt{2}+4-5\sqrt{7}-2\sqrt{14} b'17 biex tikseb\frac{5}{17}\sqrt{2}+\frac{4}{17}-\frac{5}{17}\sqrt{7}-\frac{2}{17}\sqrt{14}.