Solvi għal x
x=-\frac{2}{5}=-0.4
x=1
Graff
Sehem
Ikkupjat fuq il-klibbord
a+b=-3 ab=5\left(-2\right)=-10
Biex issolvi l-ekwazzjoni, iffatura n-naħa tax-xellug bl-iggruppar. L-ewwel, in-naħa tax-xellug jeħtieġ tinkiteb mill-ġdid bħala 5x^{2}+ax+bx-2. Biex issib a u b, ikkonfigura sistema biex tiġi solvuta.
1,-10 2,-5
Minħabba li ab huwa negattiv, a u b għandhom sinjali opposti. Minħabba li a+b huwa negattiv, in-numru negattiv għandu l-valur assolut akbar mill-pożittiv. Elenka l-pari kollha bħal dawn li jagħtu prodott -10.
1-10=-9 2-5=-3
Ikkalkula s-somma għal kull par.
a=-5 b=2
Is-soluzzjoni hija l-par li jagħti s-somma -3.
\left(5x^{2}-5x\right)+\left(2x-2\right)
Erġa' ikteb 5x^{2}-3x-2 bħala \left(5x^{2}-5x\right)+\left(2x-2\right).
5x\left(x-1\right)+2\left(x-1\right)
Fattur 5x fl-ewwel u 2 fit-tieni grupp.
\left(x-1\right)\left(5x+2\right)
Iffattura 'l barra t-terminu komuni x-1 bl-użu ta' propjetà distributtiva.
x=1 x=-\frac{2}{5}
Biex issib soluzzjonijiet tal-ekwazzjoni, solvi x-1=0 u 5x+2=0.
5x^{2}-3x-2=0
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5\left(-2\right)}}{2\times 5}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 5 għal a, -3 għal b, u -2 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 5\left(-2\right)}}{2\times 5}
Ikkwadra -3.
x=\frac{-\left(-3\right)±\sqrt{9-20\left(-2\right)}}{2\times 5}
Immultiplika -4 b'5.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 5}
Immultiplika -20 b'-2.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 5}
Żid 9 ma' 40.
x=\frac{-\left(-3\right)±7}{2\times 5}
Ħu l-għerq kwadrat ta' 49.
x=\frac{3±7}{2\times 5}
L-oppost ta' -3 huwa 3.
x=\frac{3±7}{10}
Immultiplika 2 b'5.
x=\frac{10}{10}
Issa solvi l-ekwazzjoni x=\frac{3±7}{10} fejn ± hija plus. Żid 3 ma' 7.
x=1
Iddividi 10 b'10.
x=-\frac{4}{10}
Issa solvi l-ekwazzjoni x=\frac{3±7}{10} fejn ± hija minus. Naqqas 7 minn 3.
x=-\frac{2}{5}
Naqqas il-frazzjoni \frac{-4}{10} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
x=1 x=-\frac{2}{5}
L-ekwazzjoni issa solvuta.
5x^{2}-3x-2=0
Ekwazzjonijiet kwadratiċi bħal din jistgħu jiġu solvuti billi tikkompleta l-kwadrat. Sabiex tikkompleta l-kwadrat, l-ekwazzjoni l-ewwel trid tkun fil-forma x^{2}+bx=c.
5x^{2}-3x-2-\left(-2\right)=-\left(-2\right)
Żid 2 maż-żewġ naħat tal-ekwazzjoni.
5x^{2}-3x=-\left(-2\right)
Jekk tnaqqas -2 minnu nnifsu jibqa' 0.
5x^{2}-3x=2
Naqqas -2 minn 0.
\frac{5x^{2}-3x}{5}=\frac{2}{5}
Iddividi ż-żewġ naħat b'5.
x^{2}-\frac{3}{5}x=\frac{2}{5}
Meta tiddividi b'5 titneħħa l-multiplikazzjoni b'5.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=\frac{2}{5}+\left(-\frac{3}{10}\right)^{2}
Iddividi -\frac{3}{5}, il-koeffiċjent tat-terminu x, b'2 biex tikseb -\frac{3}{10}. Imbagħad żid il-kwadru ta' -\frac{3}{10} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}-\frac{3}{5}x+\frac{9}{100}=\frac{2}{5}+\frac{9}{100}
Ikkwadra -\frac{3}{10} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}-\frac{3}{5}x+\frac{9}{100}=\frac{49}{100}
Żid \frac{2}{5} ma' \frac{9}{100} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(x-\frac{3}{10}\right)^{2}=\frac{49}{100}
Fattur x^{2}-\frac{3}{5}x+\frac{9}{100}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{\frac{49}{100}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x-\frac{3}{10}=\frac{7}{10} x-\frac{3}{10}=-\frac{7}{10}
Issimplifika.
x=1 x=-\frac{2}{5}
Żid \frac{3}{10} maż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}