Solvi għal x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graff
Sehem
Ikkupjat fuq il-klibbord
a+b=-4 ab=4\left(-15\right)=-60
Biex issolvi l-ekwazzjoni, iffatura n-naħa tax-xellug bl-iggruppar. L-ewwel, in-naħa tax-xellug jeħtieġ tinkiteb mill-ġdid bħala 4x^{2}+ax+bx-15. Biex issib a u b, ikkonfigura sistema biex tiġi solvuta.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Minħabba li ab huwa negattiv, a u b għandhom sinjali opposti. Minħabba li a+b huwa negattiv, in-numru negattiv għandu l-valur assolut akbar mill-pożittiv. Elenka l-pari kollha bħal dawn li jagħtu prodott -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Ikkalkula s-somma għal kull par.
a=-10 b=6
Is-soluzzjoni hija l-par li jagħti s-somma -4.
\left(4x^{2}-10x\right)+\left(6x-15\right)
Erġa' ikteb 4x^{2}-4x-15 bħala \left(4x^{2}-10x\right)+\left(6x-15\right).
2x\left(2x-5\right)+3\left(2x-5\right)
Fattur 2x fl-ewwel u 3 fit-tieni grupp.
\left(2x-5\right)\left(2x+3\right)
Iffattura 'l barra t-terminu komuni 2x-5 bl-użu ta' propjetà distributtiva.
x=\frac{5}{2} x=-\frac{3}{2}
Biex issib soluzzjonijiet tal-ekwazzjoni, solvi 2x-5=0 u 2x+3=0.
4x^{2}-4x-15=0
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-15\right)}}{2\times 4}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 4 għal a, -4 għal b, u -15 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-15\right)}}{2\times 4}
Ikkwadra -4.
x=\frac{-\left(-4\right)±\sqrt{16-16\left(-15\right)}}{2\times 4}
Immultiplika -4 b'4.
x=\frac{-\left(-4\right)±\sqrt{16+240}}{2\times 4}
Immultiplika -16 b'-15.
x=\frac{-\left(-4\right)±\sqrt{256}}{2\times 4}
Żid 16 ma' 240.
x=\frac{-\left(-4\right)±16}{2\times 4}
Ħu l-għerq kwadrat ta' 256.
x=\frac{4±16}{2\times 4}
L-oppost ta' -4 huwa 4.
x=\frac{4±16}{8}
Immultiplika 2 b'4.
x=\frac{20}{8}
Issa solvi l-ekwazzjoni x=\frac{4±16}{8} fejn ± hija plus. Żid 4 ma' 16.
x=\frac{5}{2}
Naqqas il-frazzjoni \frac{20}{8} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 4.
x=-\frac{12}{8}
Issa solvi l-ekwazzjoni x=\frac{4±16}{8} fejn ± hija minus. Naqqas 16 minn 4.
x=-\frac{3}{2}
Naqqas il-frazzjoni \frac{-12}{8} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 4.
x=\frac{5}{2} x=-\frac{3}{2}
L-ekwazzjoni issa solvuta.
4x^{2}-4x-15=0
Ekwazzjonijiet kwadratiċi bħal din jistgħu jiġu solvuti billi tikkompleta l-kwadrat. Sabiex tikkompleta l-kwadrat, l-ekwazzjoni l-ewwel trid tkun fil-forma x^{2}+bx=c.
4x^{2}-4x-15-\left(-15\right)=-\left(-15\right)
Żid 15 maż-żewġ naħat tal-ekwazzjoni.
4x^{2}-4x=-\left(-15\right)
Jekk tnaqqas -15 minnu nnifsu jibqa' 0.
4x^{2}-4x=15
Naqqas -15 minn 0.
\frac{4x^{2}-4x}{4}=\frac{15}{4}
Iddividi ż-żewġ naħat b'4.
x^{2}+\left(-\frac{4}{4}\right)x=\frac{15}{4}
Meta tiddividi b'4 titneħħa l-multiplikazzjoni b'4.
x^{2}-x=\frac{15}{4}
Iddividi -4 b'4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{15}{4}+\left(-\frac{1}{2}\right)^{2}
Iddividi -1, il-koeffiċjent tat-terminu x, b'2 biex tikseb -\frac{1}{2}. Imbagħad żid il-kwadru ta' -\frac{1}{2} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}-x+\frac{1}{4}=\frac{15+1}{4}
Ikkwadra -\frac{1}{2} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}-x+\frac{1}{4}=4
Żid \frac{15}{4} ma' \frac{1}{4} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(x-\frac{1}{2}\right)^{2}=4
Fattur x^{2}-x+\frac{1}{4}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{4}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x-\frac{1}{2}=2 x-\frac{1}{2}=-2
Issimplifika.
x=\frac{5}{2} x=-\frac{3}{2}
Żid \frac{1}{2} maż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}