Aqbeż għall-kontenut ewlieni
Solvi għal x (complex solution)
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

4x^{2}+12=0
L-oppost ta' -12 huwa 12.
4x^{2}=-12
Naqqas 12 miż-żewġ naħat. Xi ħaġa mnaqqsa minn żero tagħti numru negattiv.
x^{2}=\frac{-12}{4}
Iddividi ż-żewġ naħat b'4.
x^{2}=-3
Iddividi -12 b'4 biex tikseb-3.
x=\sqrt{3}i x=-\sqrt{3}i
L-ekwazzjoni issa solvuta.
4x^{2}+12=0
L-oppost ta' -12 huwa 12.
x=\frac{0±\sqrt{0^{2}-4\times 4\times 12}}{2\times 4}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 4 għal a, 0 għal b, u 12 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\times 12}}{2\times 4}
Ikkwadra 0.
x=\frac{0±\sqrt{-16\times 12}}{2\times 4}
Immultiplika -4 b'4.
x=\frac{0±\sqrt{-192}}{2\times 4}
Immultiplika -16 b'12.
x=\frac{0±8\sqrt{3}i}{2\times 4}
Ħu l-għerq kwadrat ta' -192.
x=\frac{0±8\sqrt{3}i}{8}
Immultiplika 2 b'4.
x=\sqrt{3}i
Issa solvi l-ekwazzjoni x=\frac{0±8\sqrt{3}i}{8} fejn ± hija plus.
x=-\sqrt{3}i
Issa solvi l-ekwazzjoni x=\frac{0±8\sqrt{3}i}{8} fejn ± hija minus.
x=\sqrt{3}i x=-\sqrt{3}i
L-ekwazzjoni issa solvuta.