Solvi għal x
x = -\frac{1475}{26} = -56\frac{19}{26} \approx -56.730769231
x=0
Graff
Sehem
Ikkupjat fuq il-klibbord
x\left(26x+25\times 59\right)=0
Iffattura 'l barra x.
x=0 x=-\frac{1475}{26}
Biex issib soluzzjonijiet tal-ekwazzjoni, solvi x=0 u 26x+1475=0.
26x^{2}+1475x=0
Immultiplika 25 u 59 biex tikseb 1475.
x=\frac{-1475±\sqrt{1475^{2}}}{2\times 26}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 26 għal a, 1475 għal b, u 0 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1475±1475}{2\times 26}
Ħu l-għerq kwadrat ta' 1475^{2}.
x=\frac{-1475±1475}{52}
Immultiplika 2 b'26.
x=\frac{0}{52}
Issa solvi l-ekwazzjoni x=\frac{-1475±1475}{52} fejn ± hija plus. Żid -1475 ma' 1475.
x=0
Iddividi 0 b'52.
x=-\frac{2950}{52}
Issa solvi l-ekwazzjoni x=\frac{-1475±1475}{52} fejn ± hija minus. Naqqas 1475 minn -1475.
x=-\frac{1475}{26}
Naqqas il-frazzjoni \frac{-2950}{52} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
x=0 x=-\frac{1475}{26}
L-ekwazzjoni issa solvuta.
26x^{2}+1475x=0
Immultiplika 25 u 59 biex tikseb 1475.
\frac{26x^{2}+1475x}{26}=\frac{0}{26}
Iddividi ż-żewġ naħat b'26.
x^{2}+\frac{1475}{26}x=\frac{0}{26}
Meta tiddividi b'26 titneħħa l-multiplikazzjoni b'26.
x^{2}+\frac{1475}{26}x=0
Iddividi 0 b'26.
x^{2}+\frac{1475}{26}x+\left(\frac{1475}{52}\right)^{2}=\left(\frac{1475}{52}\right)^{2}
Iddividi \frac{1475}{26}, il-koeffiċjent tat-terminu x, b'2 biex tikseb \frac{1475}{52}. Imbagħad żid il-kwadru ta' \frac{1475}{52} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}+\frac{1475}{26}x+\frac{2175625}{2704}=\frac{2175625}{2704}
Ikkwadra \frac{1475}{52} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
\left(x+\frac{1475}{52}\right)^{2}=\frac{2175625}{2704}
Fattur x^{2}+\frac{1475}{26}x+\frac{2175625}{2704}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1475}{52}\right)^{2}}=\sqrt{\frac{2175625}{2704}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x+\frac{1475}{52}=\frac{1475}{52} x+\frac{1475}{52}=-\frac{1475}{52}
Issimplifika.
x=0 x=-\frac{1475}{26}
Naqqas \frac{1475}{52} miż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}