Solvi għal x
x=\frac{\sqrt{34}}{20}-\frac{7}{5}\approx -1.108452405
x=-\frac{\sqrt{34}}{20}-\frac{7}{5}\approx -1.691547595
Graff
Sehem
Ikkupjat fuq il-klibbord
2\left(3x+4\right)\times 2\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Il-varjabbli x ma jistax ikun ugwali għal -1 billi d-diviżjoni b'żero mhux iddefinit. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'2\left(x+1\right).
4\left(3x+4\right)\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Immultiplika 2 u 2 biex tikseb 4.
\left(12x+16\right)\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 4 b'3x+4.
12x^{2}+28x+16-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 12x+16 b'x+1 u kkombina termini simili.
12x^{2}+28x+16-4\left(5x+2\right)\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Immultiplika -2 u 2 biex tikseb -4.
12x^{2}+28x+16+\left(-20x-8\right)\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika -4 b'5x+2.
12x^{2}+28x+16-20x^{2}-28x-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika -20x-8 b'x+1 u kkombina termini simili.
-8x^{2}+28x+16-28x-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Ikkombina 12x^{2} u -20x^{2} biex tikseb -8x^{2}.
-8x^{2}+16-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Ikkombina 28x u -28x biex tikseb 0.
-8x^{2}+8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Naqqas 8 minn 16 biex tikseb 8.
-8x^{2}+8=3+8\left(4x+10\right)\left(x+1\right)
Immultiplika 4 u 2 biex tikseb 8.
-8x^{2}+8=3+\left(32x+80\right)\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 8 b'4x+10.
-8x^{2}+8=3+32x^{2}+112x+80
Uża l-propjetà distributtiva biex timmultiplika 32x+80 b'x+1 u kkombina termini simili.
-8x^{2}+8=83+32x^{2}+112x
Żid 3 u 80 biex tikseb 83.
-8x^{2}+8-83=32x^{2}+112x
Naqqas 83 miż-żewġ naħat.
-8x^{2}-75=32x^{2}+112x
Naqqas 83 minn 8 biex tikseb -75.
-8x^{2}-75-32x^{2}=112x
Naqqas 32x^{2} miż-żewġ naħat.
-40x^{2}-75=112x
Ikkombina -8x^{2} u -32x^{2} biex tikseb -40x^{2}.
-40x^{2}-75-112x=0
Naqqas 112x miż-żewġ naħat.
-40x^{2}-112x-75=0
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-\left(-112\right)±\sqrt{\left(-112\right)^{2}-4\left(-40\right)\left(-75\right)}}{2\left(-40\right)}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi -40 għal a, -112 għal b, u -75 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-112\right)±\sqrt{12544-4\left(-40\right)\left(-75\right)}}{2\left(-40\right)}
Ikkwadra -112.
x=\frac{-\left(-112\right)±\sqrt{12544+160\left(-75\right)}}{2\left(-40\right)}
Immultiplika -4 b'-40.
x=\frac{-\left(-112\right)±\sqrt{12544-12000}}{2\left(-40\right)}
Immultiplika 160 b'-75.
x=\frac{-\left(-112\right)±\sqrt{544}}{2\left(-40\right)}
Żid 12544 ma' -12000.
x=\frac{-\left(-112\right)±4\sqrt{34}}{2\left(-40\right)}
Ħu l-għerq kwadrat ta' 544.
x=\frac{112±4\sqrt{34}}{2\left(-40\right)}
L-oppost ta' -112 huwa 112.
x=\frac{112±4\sqrt{34}}{-80}
Immultiplika 2 b'-40.
x=\frac{4\sqrt{34}+112}{-80}
Issa solvi l-ekwazzjoni x=\frac{112±4\sqrt{34}}{-80} fejn ± hija plus. Żid 112 ma' 4\sqrt{34}.
x=-\frac{\sqrt{34}}{20}-\frac{7}{5}
Iddividi 112+4\sqrt{34} b'-80.
x=\frac{112-4\sqrt{34}}{-80}
Issa solvi l-ekwazzjoni x=\frac{112±4\sqrt{34}}{-80} fejn ± hija minus. Naqqas 4\sqrt{34} minn 112.
x=\frac{\sqrt{34}}{20}-\frac{7}{5}
Iddividi 112-4\sqrt{34} b'-80.
x=-\frac{\sqrt{34}}{20}-\frac{7}{5} x=\frac{\sqrt{34}}{20}-\frac{7}{5}
L-ekwazzjoni issa solvuta.
2\left(3x+4\right)\times 2\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Il-varjabbli x ma jistax ikun ugwali għal -1 billi d-diviżjoni b'żero mhux iddefinit. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'2\left(x+1\right).
4\left(3x+4\right)\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Immultiplika 2 u 2 biex tikseb 4.
\left(12x+16\right)\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 4 b'3x+4.
12x^{2}+28x+16-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 12x+16 b'x+1 u kkombina termini simili.
12x^{2}+28x+16-4\left(5x+2\right)\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Immultiplika -2 u 2 biex tikseb -4.
12x^{2}+28x+16+\left(-20x-8\right)\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika -4 b'5x+2.
12x^{2}+28x+16-20x^{2}-28x-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika -20x-8 b'x+1 u kkombina termini simili.
-8x^{2}+28x+16-28x-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Ikkombina 12x^{2} u -20x^{2} biex tikseb -8x^{2}.
-8x^{2}+16-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Ikkombina 28x u -28x biex tikseb 0.
-8x^{2}+8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Naqqas 8 minn 16 biex tikseb 8.
-8x^{2}+8=3+8\left(4x+10\right)\left(x+1\right)
Immultiplika 4 u 2 biex tikseb 8.
-8x^{2}+8=3+\left(32x+80\right)\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 8 b'4x+10.
-8x^{2}+8=3+32x^{2}+112x+80
Uża l-propjetà distributtiva biex timmultiplika 32x+80 b'x+1 u kkombina termini simili.
-8x^{2}+8=83+32x^{2}+112x
Żid 3 u 80 biex tikseb 83.
-8x^{2}+8-32x^{2}=83+112x
Naqqas 32x^{2} miż-żewġ naħat.
-40x^{2}+8=83+112x
Ikkombina -8x^{2} u -32x^{2} biex tikseb -40x^{2}.
-40x^{2}+8-112x=83
Naqqas 112x miż-żewġ naħat.
-40x^{2}-112x=83-8
Naqqas 8 miż-żewġ naħat.
-40x^{2}-112x=75
Naqqas 8 minn 83 biex tikseb 75.
\frac{-40x^{2}-112x}{-40}=\frac{75}{-40}
Iddividi ż-żewġ naħat b'-40.
x^{2}+\left(-\frac{112}{-40}\right)x=\frac{75}{-40}
Meta tiddividi b'-40 titneħħa l-multiplikazzjoni b'-40.
x^{2}+\frac{14}{5}x=\frac{75}{-40}
Naqqas il-frazzjoni \frac{-112}{-40} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 8.
x^{2}+\frac{14}{5}x=-\frac{15}{8}
Naqqas il-frazzjoni \frac{75}{-40} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 5.
x^{2}+\frac{14}{5}x+\left(\frac{7}{5}\right)^{2}=-\frac{15}{8}+\left(\frac{7}{5}\right)^{2}
Iddividi \frac{14}{5}, il-koeffiċjent tat-terminu x, b'2 biex tikseb \frac{7}{5}. Imbagħad żid il-kwadru ta' \frac{7}{5} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}+\frac{14}{5}x+\frac{49}{25}=-\frac{15}{8}+\frac{49}{25}
Ikkwadra \frac{7}{5} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}+\frac{14}{5}x+\frac{49}{25}=\frac{17}{200}
Żid -\frac{15}{8} ma' \frac{49}{25} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(x+\frac{7}{5}\right)^{2}=\frac{17}{200}
Fattur x^{2}+\frac{14}{5}x+\frac{49}{25}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{5}\right)^{2}}=\sqrt{\frac{17}{200}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x+\frac{7}{5}=\frac{\sqrt{34}}{20} x+\frac{7}{5}=-\frac{\sqrt{34}}{20}
Issimplifika.
x=\frac{\sqrt{34}}{20}-\frac{7}{5} x=-\frac{\sqrt{34}}{20}-\frac{7}{5}
Naqqas \frac{7}{5} miż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}