Aqbeż għall-kontenut ewlieni
Fattur
Tick mark Image
Evalwa
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

8\left(2x^{2}+x\right)
Iffattura 'l barra 8.
x\left(2x+1\right)
Ikkunsidra li 2x^{2}+x. Iffattura 'l barra x.
8x\left(2x+1\right)
Erġa' ikteb l-espressjoni ffatturata kompluta.
16x^{2}+8x=0
Polynomial kwadratika tista' tiġi fatturata billi tuża t-trasformazzjoni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), fejn x_{1} u x_{2} huma s-soluzzjonijiet tal-ekwazzjoni kwadratika ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}}}{2\times 16}
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-8±8}{2\times 16}
Ħu l-għerq kwadrat ta' 8^{2}.
x=\frac{-8±8}{32}
Immultiplika 2 b'16.
x=\frac{0}{32}
Issa solvi l-ekwazzjoni x=\frac{-8±8}{32} fejn ± hija plus. Żid -8 ma' 8.
x=0
Iddividi 0 b'32.
x=-\frac{16}{32}
Issa solvi l-ekwazzjoni x=\frac{-8±8}{32} fejn ± hija minus. Naqqas 8 minn -8.
x=-\frac{1}{2}
Naqqas il-frazzjoni \frac{-16}{32} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 16.
16x^{2}+8x=16x\left(x-\left(-\frac{1}{2}\right)\right)
Iffattura l-espressjoni oriġinali permezz ta’ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Issostitwixxi 0 għal x_{1} u -\frac{1}{2} għal x_{2}.
16x^{2}+8x=16x\left(x+\frac{1}{2}\right)
Issimplifika l-espressjonijiet kollha tal-formola p-\left(-q\right) sa p+q.
16x^{2}+8x=16x\times \frac{2x+1}{2}
Żid \frac{1}{2} ma' x biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
16x^{2}+8x=8x\left(2x+1\right)
Ikkanċella l-akbar fattur komuni 2 f'16 u 2.