Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{126\left(\frac{x+y}{y\left(x+y\right)}-\frac{y}{y\left(x+y\right)}\right)}{\frac{x}{y}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' y u x+y huwa y\left(x+y\right). Immultiplika \frac{1}{y} b'\frac{x+y}{x+y}. Immultiplika \frac{1}{x+y} b'\frac{y}{y}.
\frac{126\times \frac{x+y-y}{y\left(x+y\right)}}{\frac{x}{y}}
Billi \frac{x+y}{y\left(x+y\right)} u \frac{y}{y\left(x+y\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{126\times \frac{x}{y\left(x+y\right)}}{\frac{x}{y}}
Ikkombina termini simili f'x+y-y.
\frac{\frac{126x}{y\left(x+y\right)}}{\frac{x}{y}}
Esprimi 126\times \frac{x}{y\left(x+y\right)} bħala frazzjoni waħda.
\frac{126xy}{y\left(x+y\right)x}
Iddividi \frac{126x}{y\left(x+y\right)} b'\frac{x}{y} billi timmultiplika \frac{126x}{y\left(x+y\right)} bir-reċiproku ta' \frac{x}{y}.
\frac{126}{x+y}
Annulla xy fin-numeratur u d-denominatur.
\frac{126\left(\frac{x+y}{y\left(x+y\right)}-\frac{y}{y\left(x+y\right)}\right)}{\frac{x}{y}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' y u x+y huwa y\left(x+y\right). Immultiplika \frac{1}{y} b'\frac{x+y}{x+y}. Immultiplika \frac{1}{x+y} b'\frac{y}{y}.
\frac{126\times \frac{x+y-y}{y\left(x+y\right)}}{\frac{x}{y}}
Billi \frac{x+y}{y\left(x+y\right)} u \frac{y}{y\left(x+y\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{126\times \frac{x}{y\left(x+y\right)}}{\frac{x}{y}}
Ikkombina termini simili f'x+y-y.
\frac{\frac{126x}{y\left(x+y\right)}}{\frac{x}{y}}
Esprimi 126\times \frac{x}{y\left(x+y\right)} bħala frazzjoni waħda.
\frac{126xy}{y\left(x+y\right)x}
Iddividi \frac{126x}{y\left(x+y\right)} b'\frac{x}{y} billi timmultiplika \frac{126x}{y\left(x+y\right)} bir-reċiproku ta' \frac{x}{y}.
\frac{126}{x+y}
Annulla xy fin-numeratur u d-denominatur.