Aqbeż għall-kontenut ewlieni
Solvi għal x
Tick mark Image
Graff

Sehem

1212 ^ {2} = 108 ^ {2} + x ^ {2} - 2 \cdot 108 \cdot x \cdot -0.5299192642332048
Evaluate trigonometric functions in the problem
1468944=108^{2}+x^{2}-2\times 108x\left(-0.5299192642332048\right)
Ikkalkula 1212 bil-power ta' 2 u tikseb 1468944.
1468944=11664+x^{2}-2\times 108x\left(-0.5299192642332048\right)
Ikkalkula 108 bil-power ta' 2 u tikseb 11664.
1468944=11664+x^{2}-216x\left(-0.5299192642332048\right)
Immultiplika 2 u 108 biex tikseb 216.
1468944=11664+x^{2}-\left(-114.4625610743722368x\right)
Immultiplika 216 u -0.5299192642332048 biex tikseb -114.4625610743722368.
1468944=11664+x^{2}+114.4625610743722368x
L-oppost ta' -114.4625610743722368x huwa 114.4625610743722368x.
11664+x^{2}+114.4625610743722368x=1468944
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
11664+x^{2}+114.4625610743722368x-1468944=0
Naqqas 1468944 miż-żewġ naħat.
-1457280+x^{2}+114.4625610743722368x=0
Naqqas 1468944 minn 11664 biex tikseb -1457280.
x^{2}+114.4625610743722368x-1457280=0
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-114.4625610743722368±\sqrt{114.4625610743722368^{2}-4\left(-1457280\right)}}{2}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 1 għal a, 114.4625610743722368 għal b, u -1457280 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-114.4625610743722368±\sqrt{13101.67788770439438838411920663527424-4\left(-1457280\right)}}{2}
Ikkwadra 114.4625610743722368 billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x=\frac{-114.4625610743722368±\sqrt{13101.67788770439438838411920663527424+5829120}}{2}
Immultiplika -4 b'-1457280.
x=\frac{-114.4625610743722368±\sqrt{5842221.67788770439438838411920663527424}}{2}
Żid 13101.67788770439438838411920663527424 ma' 5829120.
x=\frac{-114.4625610743722368±\frac{3\sqrt{3962010143966813418503407198897729}}{78125000000000}}{2}
Ħu l-għerq kwadrat ta' 5842221.67788770439438838411920663527424.
x=\frac{3\sqrt{3962010143966813418503407198897729}-8942387583935331}{2\times 78125000000000}
Issa solvi l-ekwazzjoni x=\frac{-114.4625610743722368±\frac{3\sqrt{3962010143966813418503407198897729}}{78125000000000}}{2} fejn ± hija plus. Żid -114.4625610743722368 ma' \frac{3\sqrt{3962010143966813418503407198897729}}{78125000000000}.
x=\frac{3\sqrt{3962010143966813418503407198897729}-8942387583935331}{156250000000000}
Iddividi \frac{-8942387583935331+3\sqrt{3962010143966813418503407198897729}}{78125000000000} b'2.
x=\frac{-3\sqrt{3962010143966813418503407198897729}-8942387583935331}{2\times 78125000000000}
Issa solvi l-ekwazzjoni x=\frac{-114.4625610743722368±\frac{3\sqrt{3962010143966813418503407198897729}}{78125000000000}}{2} fejn ± hija minus. Naqqas \frac{3\sqrt{3962010143966813418503407198897729}}{78125000000000} minn -114.4625610743722368.
x=\frac{-3\sqrt{3962010143966813418503407198897729}-8942387583935331}{156250000000000}
Iddividi \frac{-8942387583935331-3\sqrt{3962010143966813418503407198897729}}{78125000000000} b'2.
x=\frac{3\sqrt{3962010143966813418503407198897729}-8942387583935331}{156250000000000} x=\frac{-3\sqrt{3962010143966813418503407198897729}-8942387583935331}{156250000000000}
L-ekwazzjoni issa solvuta.
1212 ^ {2} = 108 ^ {2} + x ^ {2} - 2 \cdot 108 \cdot x \cdot -0.5299192642332048
Evaluate trigonometric functions in the problem
1468944=108^{2}+x^{2}-2\times 108x\left(-0.5299192642332048\right)
Ikkalkula 1212 bil-power ta' 2 u tikseb 1468944.
1468944=11664+x^{2}-2\times 108x\left(-0.5299192642332048\right)
Ikkalkula 108 bil-power ta' 2 u tikseb 11664.
1468944=11664+x^{2}-216x\left(-0.5299192642332048\right)
Immultiplika 2 u 108 biex tikseb 216.
1468944=11664+x^{2}-\left(-114.4625610743722368x\right)
Immultiplika 216 u -0.5299192642332048 biex tikseb -114.4625610743722368.
1468944=11664+x^{2}+114.4625610743722368x
L-oppost ta' -114.4625610743722368x huwa 114.4625610743722368x.
11664+x^{2}+114.4625610743722368x=1468944
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
x^{2}+114.4625610743722368x=1468944-11664
Naqqas 11664 miż-żewġ naħat.
x^{2}+114.4625610743722368x=1457280
Naqqas 11664 minn 1468944 biex tikseb 1457280.
x^{2}+114.4625610743722368x+57.2312805371861184^{2}=1457280+57.2312805371861184^{2}
Iddividi 114.4625610743722368, il-koeffiċjent tat-terminu x, b'2 biex tikseb 57.2312805371861184. Imbagħad żid il-kwadru ta' 57.2312805371861184 maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}+114.4625610743722368x+3275.41947192609859709602980165881856=1457280+3275.41947192609859709602980165881856
Ikkwadra 57.2312805371861184 billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}+114.4625610743722368x+3275.41947192609859709602980165881856=1460555.41947192609859709602980165881856
Żid 1457280 ma' 3275.41947192609859709602980165881856.
\left(x+57.2312805371861184\right)^{2}=1460555.41947192609859709602980165881856
Fattur x^{2}+114.4625610743722368x+3275.41947192609859709602980165881856. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+57.2312805371861184\right)^{2}}=\sqrt{1460555.41947192609859709602980165881856}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x+57.2312805371861184=\frac{3\sqrt{3962010143966813418503407198897729}}{156250000000000} x+57.2312805371861184=-\frac{3\sqrt{3962010143966813418503407198897729}}{156250000000000}
Issimplifika.
x=\frac{3\sqrt{3962010143966813418503407198897729}-8942387583935331}{156250000000000} x=\frac{-3\sqrt{3962010143966813418503407198897729}-8942387583935331}{156250000000000}
Naqqas 57.2312805371861184 miż-żewġ naħat tal-ekwazzjoni.