Aqbeż għall-kontenut ewlieni
Solvi għal p
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

1044\times \frac{1}{1000}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Ikkalkula 10 bil-power ta' -3 u tikseb \frac{1}{1000}.
\frac{261}{250}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Immultiplika 1044 u \frac{1}{1000} biex tikseb \frac{261}{250}.
\frac{261}{250}p=2478968175\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Immultiplika 83145 u 29815 biex tikseb 2478968175.
\frac{261}{250}p=2478968175\left(1-186\times \frac{1}{1000000}p+106\times 10^{-8}p^{2}\right)
Ikkalkula 10 bil-power ta' -6 u tikseb \frac{1}{1000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times 10^{-8}p^{2}\right)
Immultiplika 186 u \frac{1}{1000000} biex tikseb \frac{93}{500000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times \frac{1}{100000000}p^{2}\right)
Ikkalkula 10 bil-power ta' -8 u tikseb \frac{1}{100000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}\right)
Immultiplika 106 u \frac{1}{100000000} biex tikseb \frac{53}{50000000}.
\frac{261}{250}p=2478968175-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
Uża l-propjetà distributtiva biex timmultiplika 2478968175 b'1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}.
\frac{261}{250}p-2478968175=-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
Naqqas 2478968175 miż-żewġ naħat.
\frac{261}{250}p-2478968175+\frac{9221761611}{20000}p=\frac{5255412531}{2000000}p^{2}
Żid \frac{9221761611}{20000}p maż-żewġ naħat.
\frac{9221782491}{20000}p-2478968175=\frac{5255412531}{2000000}p^{2}
Ikkombina \frac{261}{250}p u \frac{9221761611}{20000}p biex tikseb \frac{9221782491}{20000}p.
\frac{9221782491}{20000}p-2478968175-\frac{5255412531}{2000000}p^{2}=0
Naqqas \frac{5255412531}{2000000}p^{2} miż-żewġ naħat.
-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p-2478968175=0
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\left(\frac{9221782491}{20000}\right)^{2}-4\left(-\frac{5255412531}{2000000}\right)\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi -\frac{5255412531}{2000000} għal a, \frac{9221782491}{20000} għal b, u -2478968175 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}-4\left(-\frac{5255412531}{2000000}\right)\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
Ikkwadra \frac{9221782491}{20000} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}+\frac{5255412531}{500000}\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
Immultiplika -4 b'-\frac{5255412531}{2000000}.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}-\frac{521120016433808037}{20000}}}{2\left(-\frac{5255412531}{2000000}\right)}
Immultiplika \frac{5255412531}{500000} b'-2478968175.
p=\frac{-\frac{9221782491}{20000}±\sqrt{-\frac{10337359056364846574919}{400000000}}}{2\left(-\frac{5255412531}{2000000}\right)}
Żid \frac{85041272311314165081}{400000000} ma' -\frac{521120016433808037}{20000} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{2\left(-\frac{5255412531}{2000000}\right)}
Ħu l-għerq kwadrat ta' -\frac{10337359056364846574919}{400000000}.
p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}}
Immultiplika 2 b'-\frac{5255412531}{2000000}.
p=\frac{-9221782491+3\sqrt{1148595450707205174991}i}{-\frac{5255412531}{1000000}\times 20000}
Issa solvi l-ekwazzjoni p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}} fejn ± hija plus. Żid -\frac{9221782491}{20000} ma' \frac{3i\sqrt{1148595450707205174991}}{20000}.
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}
Iddividi \frac{-9221782491+3i\sqrt{1148595450707205174991}}{20000} b'-\frac{5255412531}{1000000} billi timmultiplika \frac{-9221782491+3i\sqrt{1148595450707205174991}}{20000} bir-reċiproku ta' -\frac{5255412531}{1000000}.
p=\frac{-3\sqrt{1148595450707205174991}i-9221782491}{-\frac{5255412531}{1000000}\times 20000}
Issa solvi l-ekwazzjoni p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}} fejn ± hija minus. Naqqas \frac{3i\sqrt{1148595450707205174991}}{20000} minn -\frac{9221782491}{20000}.
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}
Iddividi \frac{-9221782491-3i\sqrt{1148595450707205174991}}{20000} b'-\frac{5255412531}{1000000} billi timmultiplika \frac{-9221782491-3i\sqrt{1148595450707205174991}}{20000} bir-reċiproku ta' -\frac{5255412531}{1000000}.
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177} p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}
L-ekwazzjoni issa solvuta.
1044\times \frac{1}{1000}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Ikkalkula 10 bil-power ta' -3 u tikseb \frac{1}{1000}.
\frac{261}{250}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Immultiplika 1044 u \frac{1}{1000} biex tikseb \frac{261}{250}.
\frac{261}{250}p=2478968175\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Immultiplika 83145 u 29815 biex tikseb 2478968175.
\frac{261}{250}p=2478968175\left(1-186\times \frac{1}{1000000}p+106\times 10^{-8}p^{2}\right)
Ikkalkula 10 bil-power ta' -6 u tikseb \frac{1}{1000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times 10^{-8}p^{2}\right)
Immultiplika 186 u \frac{1}{1000000} biex tikseb \frac{93}{500000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times \frac{1}{100000000}p^{2}\right)
Ikkalkula 10 bil-power ta' -8 u tikseb \frac{1}{100000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}\right)
Immultiplika 106 u \frac{1}{100000000} biex tikseb \frac{53}{50000000}.
\frac{261}{250}p=2478968175-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
Uża l-propjetà distributtiva biex timmultiplika 2478968175 b'1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}.
\frac{261}{250}p+\frac{9221761611}{20000}p=2478968175+\frac{5255412531}{2000000}p^{2}
Żid \frac{9221761611}{20000}p maż-żewġ naħat.
\frac{9221782491}{20000}p=2478968175+\frac{5255412531}{2000000}p^{2}
Ikkombina \frac{261}{250}p u \frac{9221761611}{20000}p biex tikseb \frac{9221782491}{20000}p.
\frac{9221782491}{20000}p-\frac{5255412531}{2000000}p^{2}=2478968175
Naqqas \frac{5255412531}{2000000}p^{2} miż-żewġ naħat.
-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p=2478968175
Ekwazzjonijiet kwadratiċi bħal din jistgħu jiġu solvuti billi tikkompleta l-kwadrat. Sabiex tikkompleta l-kwadrat, l-ekwazzjoni l-ewwel trid tkun fil-forma x^{2}+bx=c.
\frac{-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p}{-\frac{5255412531}{2000000}}=\frac{2478968175}{-\frac{5255412531}{2000000}}
Iddividi ż-żewġ naħat tal-ekwazzjoni b'-\frac{5255412531}{2000000}, li hija l-istess bħal multiplikazzjoni taż-żewġ naħat bir-reċiproku tal-frazzjoni.
p^{2}+\frac{\frac{9221782491}{20000}}{-\frac{5255412531}{2000000}}p=\frac{2478968175}{-\frac{5255412531}{2000000}}
Meta tiddividi b'-\frac{5255412531}{2000000} titneħħa l-multiplikazzjoni b'-\frac{5255412531}{2000000}.
p^{2}-\frac{307392749700}{1751804177}p=\frac{2478968175}{-\frac{5255412531}{2000000}}
Iddividi \frac{9221782491}{20000} b'-\frac{5255412531}{2000000} billi timmultiplika \frac{9221782491}{20000} bir-reċiproku ta' -\frac{5255412531}{2000000}.
p^{2}-\frac{307392749700}{1751804177}p=-\frac{50000000}{53}
Iddividi 2478968175 b'-\frac{5255412531}{2000000} billi timmultiplika 2478968175 bir-reċiproku ta' -\frac{5255412531}{2000000}.
p^{2}-\frac{307392749700}{1751804177}p+\left(-\frac{153696374850}{1751804177}\right)^{2}=-\frac{50000000}{53}+\left(-\frac{153696374850}{1751804177}\right)^{2}
Iddividi -\frac{307392749700}{1751804177}, il-koeffiċjent tat-terminu x, b'2 biex tikseb -\frac{153696374850}{1751804177}. Imbagħad żid il-kwadru ta' -\frac{153696374850}{1751804177} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}=-\frac{50000000}{53}+\frac{23622575642031712522500}{3068817874554647329}
Ikkwadra -\frac{153696374850}{1751804177} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}=-\frac{2871488626768012937477500}{3068817874554647329}
Żid -\frac{50000000}{53} ma' \frac{23622575642031712522500}{3068817874554647329} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(p-\frac{153696374850}{1751804177}\right)^{2}=-\frac{2871488626768012937477500}{3068817874554647329}
Fattur p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{153696374850}{1751804177}\right)^{2}}=\sqrt{-\frac{2871488626768012937477500}{3068817874554647329}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
p-\frac{153696374850}{1751804177}=\frac{50\sqrt{1148595450707205174991}i}{1751804177} p-\frac{153696374850}{1751804177}=-\frac{50\sqrt{1148595450707205174991}i}{1751804177}
Issimplifika.
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177} p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}
Żid \frac{153696374850}{1751804177} maż-żewġ naħat tal-ekwazzjoni.